• 【UOJ】树上gcd


    点分治

    这道题还有很多种其它写法,什么长链剖分啦,启发式合并啦等等。

    首先,我们可以把点对((u,v))分成两类:
    1.u到v的路径是一条链
    2.u到v的路径不是一条链(废话)
    对于第一类,显然(f(u,v))就是链的长度,可以单独统计

    对于第二类,就要在点分治上搞了
    我们可以先计算出为d的倍数的点对数,最后容斥一下即可
    在点分治中,我们取出当前子树的重心root,统计路径经过root的点对,那么又可以分成两类:
    A.u和v都在root的子树内
    B.u和v一个在root的子树内,另一个不在

    对于A类:
    (num[x])表示以root的儿子为根的子树内深度(相对于root的深度,下同)为x的点个数
    (Tnum[x])表示以root为根的子树内深度为x的点个数
    (sum[x])表示以root的儿子为根的子树内深度为x的倍数的点个数
    (Tsum[x])表示以root为根的子树内深度为x的倍数的点个数
    那么我们暴力遍历root的儿子:

    void DFS_Deep(int x,int fa,int dep,int &max_dep){//max_dep表示当前子树的最大深度,方便更新和清空
        max_dep=max(max_dep,dep);
        num[dep]++;
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t]||t==fa)continue;
            DFS_Deep(t,x,dep+1,max_dep);
        }
    }
    

    然后我们求出(sum[x]),并把(num[x])(sum[x])加到(Tnum[x])(Tsum[x]),同时更新答案。
    这部分整体代码:

    void Update_Ans1(int x,int fa){
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t]||t==fa)continue;
            int tmp=0;//tmp表示以当前儿子为根的子树的最大深度
            DFS_Deep(t,x,1,tmp);//遍历
            Maxd=max(Maxd,tmp);//更新总的最大深度
            for(int j=1;j<=tmp;j++)for(int k=j;k<=tmp;k+=j)sum[j]+=num[k];//求出sum
            for(int j=1;j<=Maxd;j++)ans1[j]+=1LL*sum[j]*Tsum[j];//更新答案
            for(int j=1;j<=tmp;j++)Tsum[j]+=sum[j],Tnum[j]+=num[j];//加进去
            for(int j=1;j<=tmp;j++)sum[j]=num[j]=0;//清空
        }
    }
    

    对于B类:
    这就有点麻烦了。。。
    我们设当前子树的根节点为g,那我们遍历(pre[root])到g的路径,对于每个点i,我们可以向上面一样求出以i为根的子树内(num[x])(sum[x])的值:

    int tmp=0;
    for(int i=0;i<G[x].size();i++){//我拿x来代指i的
        int t=G[x][i];
        if(vis[t]||t==pre[x]||t==la)continue;//la表示这条路径是由la上去的,这也不能遍历下去
        DFS_Deep(t,x,1,tmp);
        Maxd=max(Maxd,tmp);
    }
    for(int j=1;j<=tmp;j++)for(int k=j;k<=tmp;k+=j)sum[j]+=num[k];
    

    然后,我们枚举d,我们需要在root的子树中找深度间隔为d的点个数和,由于root到i还是有距离的,所以并不是从root点直接开始找。不过这样只有d种情况,我们可以记忆化,但是记忆化空间是开不下的,所以对于(dle sqrt n)我们就记忆化处理,而对于(d>sqrt n)我们就直接找(难以口胡,实在不行就看代码吧)
    这部分整体代码:

    void Update_Ans2(int x,int la,int count){//count表示root到x的距离(x代指i)
        int tmp=0;
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t]||t==pre[x]||t==la)continue;
            DFS_Deep(t,x,1,tmp);
            Maxd=max(Maxd,tmp);
        }
        for(int j=1;j<=tmp;j++)for(int k=j;k<=tmp;k+=j)sum[j]+=num[k];
        int limit=min(tmp,Up);//Up表示sqrt(n)
        for(int j=1;j<=limit;j++){//小于sqrt(n)记忆化
            if(dp[j][count%j]==-1){//dp用来记忆化
                dp[j][count%j]=0;
                for(int k=(j-count%j)%j;k<=Maxd;k+=j)dp[j][count%j]+=Tnum[k];
            }
            ans1[j]+=1LL*dp[j][count%j]*sum[j];//更新答案
        }
        for(int j=limit+1;j<=tmp;j++){//大于sqrt(n)直接枚举
            ll res=0;
            for(int k=(j-count%j)%j;k<=Maxd;k+=j)res+=Tnum[k];
            ans1[j]+=1LL*res*sum[j];//更新答案
        }
        for(int i=1;i<=tmp;i++)sum[i]=num[i]=0;//清空
    }
    

    全部代码:

    #include<bits/stdc++.h>
    #define ll long long
    #define MAXN 200010
    using namespace std;
    int n,pre[MAXN],size[MAXN],W[MAXN],root,num[MAXN],Tnum[MAXN],sum[MAXN],Tsum[MAXN],Maxd,dp[1010][1010],Up,SIZE,deep[MAXN];
    ll ans1[MAXN],ans2[MAXN];
    vector<int> G[MAXN];
    bool vis[MAXN];
    void Getroot(int x,int fa){
        size[x]=1,W[x]=0;
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(t==fa||vis[t])continue;
            Getroot(t,x);
            size[x]+=size[t];
            W[x]=max(W[x],size[t]);
        }
        W[x]=max(W[x],SIZE-size[x]);
        if(W[x]<W[root])root=x;
    }
    void DFS_Deep(int x,int fa,int dep,int &max_dep){
        max_dep=max(max_dep,dep);
        num[dep]++;
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t]||t==fa)continue;
            DFS_Deep(t,x,dep+1,max_dep);
        }
    }
    void Update_Ans1(int x,int fa){
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t]||t==fa)continue;
            int tmp=0;
            DFS_Deep(t,x,1,tmp);
            Maxd=max(Maxd,tmp);
            for(int j=1;j<=tmp;j++)for(int k=j;k<=tmp;k+=j)sum[j]+=num[k];
            for(int j=1;j<=Maxd;j++)ans1[j]+=1LL*sum[j]*Tsum[j];
            for(int j=1;j<=tmp;j++)Tsum[j]+=sum[j],Tnum[j]+=num[j];
            for(int j=1;j<=tmp;j++)sum[j]=num[j]=0;
        }
    }
    void Update_Ans2(int x,int la,int count){
        int tmp=0;
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t]||t==pre[x]||t==la)continue;
            DFS_Deep(t,x,1,tmp);
            Maxd=max(Maxd,tmp);
        }
        for(int j=1;j<=tmp;j++)for(int k=j;k<=tmp;k+=j)sum[j]+=num[k];
        int limit=min(tmp,Up);
        for(int j=1;j<=limit;j++){
            if(dp[j][count%j]==-1){
                dp[j][count%j]=0;
                for(int k=(j-count%j)%j;k<=Maxd;k+=j)dp[j][count%j]+=Tnum[k];
            }
            ans1[j]+=1LL*dp[j][count%j]*sum[j];
        }
        for(int j=limit+1;j<=tmp;j++){
            ll res=0;
            for(int k=(j-count%j)%j;k<=Maxd;k+=j)res+=Tnum[k];
            ans1[j]+=1LL*res*sum[j];
        }
        for(int i=1;i<=tmp;i++)sum[i]=num[i]=0;
    }
    void DFS_Point(int x){
        Maxd=0;
        vis[x]=true;
        Update_Ans1(x,pre[x]);
        Tnum[0]=1;
        int count=0;
        for(int i=x;;i=pre[i]){
            if(vis[pre[i]]||pre[i]==0)break;
            count++;
            Update_Ans2(pre[i],i,count);
        }
        for(int i=0;i<=Maxd;i++)Tnum[i]=Tsum[i]=0;
        int limit=min(Maxd,Up);
         for(int i=1;i<=limit;i++){
             for(int j=0;j<=i-1;j++)dp[i][j]=-1;
         }
        for(int i=0;i<G[x].size();i++){
            int t=G[x][i];
            if(vis[t])continue;
            root=0,SIZE=size[t];
            Getroot(t,0);
            DFS_Point(root);
        }
    }
    int main(){
        W[0]=2e9+7;
        memset(dp,-1,sizeof(dp));
        scanf("%d",&n);
        SIZE=n;
        Up=sqrt(n);
        for(int i=2;i<=n;i++)scanf("%d",&pre[i]),G[pre[i]].push_back(i),G[i].push_back(pre[i]);
        Getroot(1,0);
        DFS_Point(root);
        //统计路径是一条链的点对
        for(int i=1;i<=n;i++)deep[i]=deep[pre[i]]+1,++ans2[deep[i]-1];
        for(int i=n-1;i>=1;i--)ans2[i]+=ans2[i+1];
        for(int i=n-1;i>=1;i--){//容斥
            for(int j=i+i;j<=n-1;j+=i)ans1[i]-=ans1[j];
        }
        for(int i=1;i<=n-1;i++)printf("%lld
    ",ans1[i]+ans2[i]);
        return 0;
    }
    
  • 相关阅读:
    jQuery Validate input是动态变化的
    flexigrid随手记
    今日随笔:scrollTop与overflow
    滚动条自动滚到底
    团队项目计划会议
    电梯演讲视频+原型展示
    NABCD项目分析
    团队第一次会议纪要
    软件开发团队介绍
    2020年11月24日
  • 原文地址:https://www.cnblogs.com/SillyTieT/p/11329065.html
Copyright © 2020-2023  润新知