• FFT与二维FFT的C#实现


      傅里叶变换在信息处理应用中具有很实用的价值,而快速傅里叶变换,即FFT,是实用的计算算法。

      本文介绍FFT和2维FFT的C#实现方法。

    1. FFT编程依据

      FFT是按照如图结构(也称蝶形结构)进行运算(图片来源于网络)。

    FFT算法

      图中,箭头代表数据流向,箭头与箭头的合并点代表相加,箭头下面的常数代表相乘,WN(注:N为下标) = exp(-j * 2 * PI / N),j为虚数单位,DIT的输入(或DIF的输出)序列重排点y[m]与初始输入点x[n]的关系为:m与n互为倒位序(例:001 -- 100,011 -- 110)。

      该图给出的是8点FFT例程,其余2^N点FFT可按照这个图进行类推,类推后可以发现,2^N点FFT只需用三个循环套嵌即可实现。

      对于idft的算法,根据公式X[k] = 对n求和{x[n] * (WN) ^ kn}以及x[n] = 对k求和{X[k] * (WN) ^ (-kn)} /N可知,只需将FFT算法中的WN换为(1 / WN)并将最后结果除以N即可得到idft。

    2. FFT算法实现

      由于作者并不擅长面向对象编程,仅仅是在功能上实现了本文需求,代码在阅读、效率上有很多缺陷。

      下面是FFT算法的实现,完整的实现在文章后面。

            // 快速傅里叶变换
            // 作者:死猫
            // ComplexList src:数据输入
            // ref int lenght:欲变换数据的长度,函数调用后此值更改为实际变换长度
            // int flag:区分fft或dtft,为1为fft,为-1为idft
            private static ComplexList fft_core(ComplexList src, ref int lenght, int flag)
            {
                //按时间抽取FFT方法(DIT)
    
                //补零后长度
                int relog2N = ReLog2N(lenght);
    
                int bitlenghth = relog2N;
                int N = 0x01 << bitlenghth;
    
                //重新复制数据,同时进行
                //    逆序排放,并补零
                int index;
                ComplexList Register = new ComplexList(N);
                for (int i = 0; i < N; i++)
                {
                    index = ReArrange(i, bitlenghth);
                    Register[i] = (index < src.Lenght) ? src[index] : new Complex(0);
                }
    
                //生成WN表,以免运行时进行重复计算
                ComplexList WN = new ComplexList(N / 2);
                for (int i = 0; i < N / 2; i++)
                {
                    WN[i] = new Complex(Math.Cos(2 * Math.PI / N * i), -flag * Math.Sin(2 * Math.PI / N * i));
                }
    
                //蝶形运算
                int Index0, Index1;
                Complex temp;
                for (int steplenght = 2; steplenght <= N; steplenght *= 2)
                {
                    for (int step = 0; step < N / steplenght; step++)
                    {
                        for (int i = 0; i < steplenght / 2; i++)
                        {
                            Index0 = steplenght * step + i;
                            Index1 = steplenght * step + i + steplenght / 2;
    
                            temp = Register[Index1] * WN[N / steplenght * i];
                            Register[Index1] = Register[Index0] - temp;
                            Register[Index0] = Register[Index0] + temp;
                        }
                    }
                }
    
                //若为idft
                if (-1 == flag)
                {
                    for (int i = 0; i < Register.Lenght; i++)
                    {
                        Register[i] /= N;
                    }
                }
    
                //赋值
                lenght = N;
    
                /*
                //清理内存
                WN = null;
                temp = null;
                GC.Collect();
                */
    
                //返回
                return Register;
            }

    3. 维FFT变换

      2维傅里叶变换是在1维傅里叶变换基础上实现的,实现方法为:

      1. 对2维输入数据的每一行进行FFT变换,变换结果仍然按行存入一个二维数组中;

      2. 对按行FFT变换后的结果,对每一列进行FFT变换,变换结果仍然按列存入一个二维数组中,该数组即为2维FFT变换结果。

      代码实现如下:

            // 2维快速傅里叶变换
            // 作者:死猫
            // int width, int height:欲变换数据的长度和宽度,函数调用后此值更改为实际变换长度
            // int flag:区分fft或dtft,为1为fft,为-1为idft
            private static Complex2D fft_2D_core(Complex2D src, ref int width, ref int height, int flag)
            {
                //补零后长度
                int width_Log2N = ReLog2N(width);
                int height_Log2N = ReLog2N(height);
                int Relog2N = Math.Max(width_Log2N, height_Log2N);
                int ReWidth = 0x01 << Relog2N;
                int ReHeight = 0x01 << Relog2N;
    
                //重新复制数据,清零
                Complex2D ReList2D = new Complex2D(ReWidth, ReHeight);
                ReList2D.Clear();
                int width_temp = Math.Min(src.Width, width);
                int height_temp = Math.Min(src.Height, height);
                for (int i = 0; i < height_temp; i++)
                {
                    for (int j = 0; j < width_temp; j++)
                    {
                        ReList2D[i, j] = new Complex(src[i, j].Re, src[i, j].Im);
                    }
                }
    
                ComplexList Xn;
                ComplexList Xk;
                int Lenght_temp;
    
                //第1遍fft
                for (int i = 0; i < ReHeight; i++)
                {
                    Xn = ReList2D.GetRow(i);
                    Lenght_temp = Xn.Lenght;
                    Xk = fft_core(Xn, ref Lenght_temp, flag);
                    ReList2D.SetRow(i, Xk);
                }
    
                //第2遍fft
                for (int i = 0; i < ReWidth; i++)
                {
                    Xn = ReList2D.GetColumn(i);
                    Lenght_temp = Xn.Lenght;
                    Xk = fft_core(Xn, ref Lenght_temp, flag);
                    ReList2D.SetColumn(i, Xk);
                }
    
                //赋值
                width = ReWidth;
                height = ReHeight;
    
                //清理内存
                Xn = null;
                Xk = null;
                GC.Collect();
    
                //返回
                return ReList2D;
            }

    3. 二维FFT测试结果

      我对一张图片进行低通、高通滤波,其传输函数分别为:

      低通:Hlp(z) = (1 - a) / 2 * (1 + 1 / z) / (1 - a * 1 / z),a = 0.8;

      高通:Hhp(z) = (1 + a) / 2 * (1 - 1 / z) / (1 - a * 1 / z),a = 0.7。

      低通、高通滤波测试结果分别如下:

    低通图片滤波

    高通图片滤波

    4. 其余相关代码实现

      由于作者并不擅长面向对象编程,仅仅是在功能上实现了本文需求,代码在阅读、效率上有很多缺陷。

      代码1:

            // 快速傅里叶变换
            // ComplexList src:数据输入,若长度非2的n次幂,
            //     则函数对末尾补零后的数据进行运算
            public static ComplexList fft(ComplexList src)
            {
                int lenght = src.Lenght;
                return fft_core(src, ref lenght, 1);
            }
            // 快速傅里叶变换
            // ComplexList src:数据输入
            // ref int lenght:欲变换的长度,函数调用后此值更改为实际变换长度
            public static ComplexList fft(ComplexList src, ref int lenght)
            {
                return fft_core(src, ref lenght, 1);
            }
    
            // 快速傅里叶变换的逆变换
            // ComplexList src:数据输入
            public static ComplexList idft(ComplexList src)
            {
                int lenght = src.Lenght;
                return idft(src, ref lenght);
            }
    
            // 快速傅里叶变换的逆变换
            // ComplexList src:数据输入
            // ref int lenght:欲变换数据的长度,函数调用后此值更改为实际变换长度
            public static ComplexList idft(ComplexList src, ref int lenght)
            {
                return fft_core(src, ref lenght, -1);
            }
    
            public static Complex2D fft_2D(Complex2D src)
            {
                int width = src.Width;
                int height = src.Height;
                return fft_2D_core(src, ref width, ref height, 1);
            }
    
            public static Complex2D idft_2D(Complex2D src)
            {
                int width = src.Width;
                int height = src.Height;
                return fft_2D_core(src, ref width, ref height, -1);
            }

      代码2:

            // 获取按位逆序,bitlenght为数据长度
            // fft函数内使用
            private static int ReArrange(int dat, int bitlenght)
            {
                int ret = 0;
                for (int i = 0; i < bitlenght; i++)
                {
                    if (0 != (dat & (0x01 << i))) ret |= ((0x01 << (bitlenght - 1)) >> i);
                }
                return ret;
            }
    
            // 获取扩展长度后的幂次
            // 由于fft要求长度为2^n,所以用此函数来获取所需长度
            public static int ReLog2N(int count)
            {
                int log2N = 0;
                uint mask = 0x80000000;
                for (int i = 0; i < 32; i++)
                {
                    if (0 != ((mask >> i) & count))
                    {
                        if ((mask >> i) == count) log2N = 31 - i;
                        else log2N = 31 - i + 1;
                        break;
                    }
                }
                return log2N;
            }

      代码3:

        public class Complex2D
        {
            double[] _Complex2D_Re;
            double[] _Complex2D_Im;
            public int Width { get; private set; }
            public int Height { get; private set; }
            public Complex this[int Row, int Column]
            {
                get 
                {
                    return new Complex(_Complex2D_Re[Row * Width + Column], _Complex2D_Im[Row * Width + Column]); 
                }
                set 
                {
                    _Complex2D_Re[Row * Width + Column] = ((Complex)value).Re;
                    _Complex2D_Im[Row * Width + Column] = ((Complex)value).Im; 
                }
            }
    
            public Complex2D(int width, int height)
            {
                Width = width;
                Height = height;
                int lenght = Width * Height;
                _Complex2D_Re = new double[lenght];
                _Complex2D_Im = new double[lenght];
            }
    
            public void Clear()
            {
                Array.Clear(_Complex2D_Re, 0, _Complex2D_Re.Length);
                Array.Clear(_Complex2D_Im, 0, _Complex2D_Im.Length);
            }
    
            public ComplexList GetColumn(int index)
            {
                ComplexList ret = new ComplexList(Height);
                for(int i = 0; i < Height; i++)
                {
                    ret[i] = this[i, index];
                }
                return ret;
            }
            public int SetColumn(int index, ComplexList src)
            {
                for (int i = 0; i < Height; i++)
                {
                    this[i, index] = (i < src.Lenght) ? src[i] : new Complex(0);
                }
                return 0;
            }
            public ComplexList GetRow(int index)
            {
                ComplexList ret = new ComplexList(Width);
                for(int i = 0; i < Width; i++)
                {
                    ret[i] = this[index, i];
                }
                return ret;
            }
            public int SetRow(int index, ComplexList src)
            {
                for (int i = 0; i < Width; i++)
                {
                    this[index, i] = (i < src.Lenght) ? src[i] : new Complex(0);
                }
                return 0;
            }
            public Complex2D GetAmplitude()
            {
                Complex2D ret = new Complex2D(Width, Height);
                for (int i = 0; i < Height; i++)
                {
                    for (int j = 0; j < Width; j++)
                    {
                        ret[i, j] = new Complex(this[i, j].Modulus());
                    }
                }
                return ret;
            }
        }
        public class ComplexList
        {
            double[] _ComplexList_Re;
            double[] _ComplexList_Im;
            public int Lenght { get; private set; }
            public Complex this[int Index]
            {
                get
                {
                    return new Complex(_ComplexList_Re[Index], _ComplexList_Im[Index]);
                }
                set
                {
                    _ComplexList_Re[Index] = ((Complex)value).Re;
                    _ComplexList_Im[Index] = ((Complex)value).Im;
                }
            }
    
            public ComplexList(int lenght)
            {
                Lenght = lenght;
                _ComplexList_Re = new double[Lenght];
                _ComplexList_Im = new double[Lenght];
            }
            public ComplexList(double[] re)
            {
                Lenght = re.Length;
                _ComplexList_Re = re;
                _ComplexList_Im = new double[Lenght];
            }
            public ComplexList(double[] re, double[] im)
            {
                Lenght = Math.Max(re.Length, im.Length);
                if (re.Length == im.Length)
                {
                    _ComplexList_Re = re;
                    _ComplexList_Im = im;
                }
                else
                {
                    _ComplexList_Re = new double[Lenght];
                    _ComplexList_Im = new double[Lenght];
                    for (int i = 0; i < re.Length; i++) _ComplexList_Re[i] = re[i];
                    for (int i = 0; i < im.Length; i++) _ComplexList_Im[i] = im[i];
                }
            }
    
            public void Clear()
            {
                Array.Clear(_ComplexList_Re, 0, _ComplexList_Re.Length);
                Array.Clear(_ComplexList_Im, 0, _ComplexList_Im.Length);
            }
    
            public double[] GetRePtr()
            {
                return _ComplexList_Re;
            }
            public double[] GetImPtr()
            {
                return _ComplexList_Im;
            }
            public ComplexList Clone()
            {
                return new ComplexList((double[])(_ComplexList_Re.Clone()), (double[])(_ComplexList_Im.Clone()));
            }
            public ComplexList GetAmplitude()
            {
                double[] amp = new double[Lenght];
                for (int i = 0; i < Lenght; i++)
                {
                    amp[i] = this[i].Modulus();
                }
                return new ComplexList(amp);
            }
        }
        public class Complex
        {
            public double Re;
            public double Im;
            public Complex()
            {
                Re = 0;
                Im = 0;
            }
            public Complex(double re)
            {
                Re = re;
                Im = 0;
            }
            public Complex(double re, double im)
            {
                Re = re;
                Im = im;
            }
    
            public double Modulus()
            {
                return Math.Sqrt(Re * Re + Im * Im);
            }
    
            public override string ToString()
            {
                string retStr;
                if (Math.Abs(Im) < 0.0001) retStr = Re.ToString("f4");
                else if (Math.Abs(Re) < 0.0001)
                {
                    if (Im > 0) retStr = "j" + Im.ToString("f4");
                    else retStr = "- j" + (0 - Im).ToString("f4");
                }
                else
                {
                    if (Im > 0) retStr = Re.ToString("f4") + "+ j" + Im.ToString("f4");
                    else retStr = Re.ToString("f4") + "- j" + (0 - Im).ToString("f4");
                }
                retStr += " ";
                return retStr;
            }
    
            //操作符重载
            public static Complex operator +(Complex c1, Complex c2)
            {
                return new Complex(c1.Re + c2.Re, c1.Im + c2.Im);
            }
            public static Complex operator +(double d, Complex c)
            {
                return new Complex(d + c.Re, c.Im);
            }
            public static Complex operator -(Complex c1, Complex c2)
            {
                return new Complex(c1.Re - c2.Re, c1.Im - c2.Im);
            }
            public static Complex operator -(double d, Complex c)
            {
                return new Complex(d - c.Re, -c.Im);
            }
            public static Complex operator *(Complex c1, Complex c2)
            {
                return new Complex(c1.Re * c2.Re - c1.Im * c2.Im, c1.Re * c2.Im + c2.Re * c1.Im);
            }
            public static Complex operator *(Complex c, double d)
            {
                return new Complex(c.Re * d, c.Im * d);
            }
            public static Complex operator *(double d, Complex c)
            {
                return new Complex(c.Re * d, c.Im * d);
            }
            public static Complex operator /(Complex c, double d)
            {
                return new Complex(c.Re / d, c.Im / d);
            }
            public static Complex operator /(double d, Complex c)
            {
                double temp = d / (c.Re * c.Re + c.Im * c.Im);
                return new Complex(c.Re * temp, -c.Im * temp);
            }
            public static Complex operator /(Complex c1, Complex c2)
            {
                double temp = 1 / (c2.Re * c2.Re + c2.Im * c2.Im);
                return new Complex((c1.Re * c2.Re + c1.Im * c2.Im) * temp, (-c1.Re * c2.Im + c2.Re * c1.Im) * temp);
            }
        }

     ==================

    20200208补充源工程,下载地址:

    https://files.cnblogs.com/files/Si-Mao/FFT.rar

  • 相关阅读:
    day12(jsp指令&内置对象&动作标签、JavaBean、EL表达式&函数库)
    day11(jsp入门&Cookie&HttpSession&一次性图片校验码)
    day10(java web之request&respone&访问路径&编码问题)
    day09:Servlet详解
    day08:软件系统的体系结构&Tomcat详解&Web应用&http协议
    泛型详解
    类加载器
    动态代理2
    动态代理3之代理工厂实现
    动态代理1
  • 原文地址:https://www.cnblogs.com/Si-Mao/p/3950023.html
Copyright © 2020-2023  润新知