import org.apache import org.apache.spark import org.apache.spark.ml.feature._ import org.apache.spark.mllib.linalg._ import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics} import org.apache.spark.rdd.RDD import org.apache.spark.sql.SQLContext import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.linalg.{Matrices, Matrix} object test42 { def main(args: Array[String]): Unit = { val masterUrl = "local[2]" val appName = "tfidf_test" val sparkConf = new SparkConf().setMaster(masterUrl).setAppName(appName) @transient val sc = new SparkContext(sparkConf) val sqlContext = new SQLContext(sc) sc.setLogLevel("ERROR") //Scala默认会导入scala.collection.immutable.Vector, // 所以必须显式导入org.apache.spark.mllib.linalg.Vector才能使用MLlib才能使用MLlib提供的Vector。 //密集向量 val dv:Vector = Vectors.dense(1.0,0.0,3.0) println(dv) //稀疏向量,3表示此向量的长度,第一个Array(0,2)表示的索引,第二个Array(1.0, 3.0)与前面的Array(0,2)是相互对应的,表示第0个位置的值为1.0,第2个位置的值为3 val sv1:Vector=Vectors.sparse(3,Array(0,2),Array(1.0,3.0)) println(sv1) //稀疏向量, 3表示此向量的长度,Seq里面每一对都是(索引,值)的形式 val sv2:Vector=Vectors.sparse(3,Seq((0,1.0),(2,3.0))) println(sv2) //标记点 val pos=LabeledPoint(1.0,Vectors.dense(1.0,0.0,3.0)) val neg=LabeledPoint(0.0,Vectors.sparse(3,Array(0,2),Array(1.0,3.0))) //创建矩阵,3行2列 val dm:Matrix=Matrices.dense(2,3,Array(1,0,2.0,3.0,4.0,5.0)) println("========dm========") println(dm) val v0 = Vectors.dense(1.0, 0.0, 3.0) val v1 = Vectors.sparse(3, Array(1), Array(2.5)) val v2 = Vectors.sparse(3, Seq((0, 1.5), (1, 1.8))) val rows = sc.parallelize(Seq(v0, v1, v2)) println("=========rows=======") println(rows.collect().toBuffer) val mat: RowMatrix = new RowMatrix(rows) val seriesX: RDD[Double] =sc.parallelize(List(1.0,2.0,3.0)) //a series val seriesY: RDD[Double] = sc.parallelize(List(4.0,5.0,6.0)) //和seriesX必须有相同的分区和基数 val correlation:Double = Statistics.corr(seriesX, seriesY, "pearson") val data: RDD[Vector] =rows//每个向量必须是行,不能是列 val correlMatrix: Matrix = Statistics.corr(data, "pearson") println("========correlMatrix========") println(correlMatrix) val summary: MultivariateStatisticalSummary = Statistics.colStats(rows) println("===================") println(summary.mean) //每个列值组成的密集向量 println(summary.variance) //列向量方差 println(summary.numNonzeros) //每个列的非零值个数 /** * Word2Vec */ val documentDF = sqlContext.createDataFrame(Seq( "Hi I heard about Spark".split(" "), "I wish Java could use case classes".split(" "), "Logistic regression models are neat".split(" ") ).map(Tuple1.apply)).toDF("text") // Learn a mapping from words to Vectors. val word2Vec = new Word2Vec() .setInputCol("text") .setOutputCol("result") .setVectorSize(3) .setMinCount(0) val model = word2Vec.fit(documentDF) val result = model.transform(documentDF) println("=======word2vec=========") result.show(10,false) /** * Countvectorizer */ val df = sqlContext.createDataFrame(Seq( (0, Array("a", "b", "c")), (1, Array("a", "b", "b", "c", "a")) )).toDF("id", "words") // fit a CountVectorizerModel from the corpus val cvModel: CountVectorizerModel = new CountVectorizer() .setInputCol("words") .setOutputCol("features") .setVocabSize(3) .setMinDF(2) .fit(df) // alternatively, define CountVectorizerModel with a-priori vocabulary val cvm = new CountVectorizerModel(Array("a", "b", "c")) .setInputCol("words") .setOutputCol("features") println("=======CountVectorizerModel=========") cvModel.transform(df).show(10,false) /** * TF-IDF */ val sentenceData = sqlContext.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsData = tokenizer.transform(sentenceData) val hashingTF = new HashingTF() .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20) val featurizedData = hashingTF.transform(wordsData) // CountVectorizer也可获取词频向量 val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features") val idfModel = idf.fit(featurizedData) val rescaledData = idfModel.transform(featurizedData) rescaledData.show(10,false) } }