https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113
基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
给出一个N * N的矩阵,其中的元素均为正整数。求这个矩阵的M次方。由于M次方的计算结果太大,只需要输出每个元素Mod (10^9 + 7)的结果。
Input
第1行:2个数N和M,中间用空格分隔。N为矩阵的大小,M为M次方。(2 <= N <= 100, 1 <= M <= 10^9) 第2 - N + 1行:每行N个数,对应N * N矩阵中的1行。(0 <= N[i] <= 10^9)
Output
共N行,每行N个数,对应M次方Mod (10^9 + 7)的结果。
Input示例
2 3 1 1 1 1
Output示例
4 4 4 4
1 #include <cstdio> 2 3 const int mod(1e9+7); 4 const int N(1e6+5); 5 int n,m; 6 struct Matrix { 7 long long e[111][111]; 8 Matrix operator * (Matrix x) const 9 { 10 Matrix tmp; 11 for(int i=0; i<n; ++i) 12 for(int j=0; j<n; ++j) 13 { 14 tmp.e[i][j]=0; 15 for(int k=0; k<n; ++k) 16 tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod; 17 } 18 return tmp; 19 } 20 }ans,base; 21 22 int Presist() 23 { 24 scanf("%d%d",&n,&m); 25 for(int i=0; i<n; ++i) 26 for(int j=0; j<n; ++j) 27 scanf("%lld",&ans.e[i][j]); base=ans; 28 for(m--; m; m>>=1,base=base*base) 29 if(m&1) ans=ans*base; 30 for(int i=0; i<n; ++i) 31 { 32 for(int j=0; j<n; ++j) 33 printf("%lld ",ans.e[i][j]); 34 puts(""); 35 } 36 return 0; 37 } 38 39 int Aptal=Presist(); 40 int main(){;}