影魔 bzoj-4826 Hnoi-2017
题目大意:给定一个$n$个数的序列$a$,求满足一下情况的点对个数:
注释:$1le n,mle 2cdot 10^5$,$1le p1,p2le 1000$。
想法:
我们先用单调栈求出一个数左边第一个比它大的,和右边第一个比它大的。$l_i$和$r_i$就表示这两个值。
然后我们发现,$(l_i,r_i)$就是一个合法的第一个条件的点对。
接下来我们考虑如何统计第二个条件的点对。
第二个条件的话如果还想用刚才的值表示的话,我们发现就是在平面上枚举一个线段,然后把这个线段染色。
每次统计一个矩形中多少个点是染色的。
而这个过程我们可以用主席树+标记永久化来实现的。
Code:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define N 200010 #define lson l,mid,ls[x],ls[y] #define rson mid+1,r,rs[x],rs[y] using namespace std; typedef long long ll; char *p1,*p2,buf[100000]; #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++) int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;} struct Node { int x,l,r; ll p; Node() {} Node(int x_,int l_,int r_,ll p_) {x=x_,l=l_,r=r_,p=p_;} }v[N<<2]; int a[N],lp[N],rp[N],sta[N],top,cnt,root[N],ls[N<<6],rs[N<<6],tot; ll sum[N<<6],add[N<<6]; inline bool cmp(const Node &a,const Node &b) {return a.x<b.x;} inline void pushup(int x) {sum[x]=sum[ls[x]]+sum[rs[x]];} void insert(int b,int e,ll a,int l,int r,int x,int &y) { y=++tot,ls[y]=ls[x],rs[y]=rs[x],add[y]=add[x],sum[y]=sum[x]+a*(e-b+1); if(b==l&&r==e) {add[y]+=a; return;} int mid=(l+r)>>1; if(e<=mid) insert(b,e,a,lson); else if(b>mid) insert(b,e,a,rson); else insert(b,mid,a,lson),insert(mid+1,e,a,rson); } ll query(int b,int e,int l,int r,int x,int y) { if(b<=l&&r<=e) return sum[y]-sum[x]; int mid=(l+r)>>1; ll ans=(add[y]-add[x])*(e-b+1); if(e<=mid) return ans+query(b,e,lson); else if(b>mid) return ans+query(b,e,rson); else return ans+query(b,mid,lson)+query(mid+1,e,rson); } int main() { int n,m,i,j,x,y; ll p1,p2; n=rd(),m=rd(); p1=rd(),p2=rd(); for(int i=1;i<=n;i++) a[i]=rd(); a[0]=a[n+1]=1<<30,top=1; for(i=1;i<=n;i++) { while(a[sta[top]]<a[i]) top--; lp[i]=sta[top],sta[++top]=i; } top=1,sta[1]=n+1; for(i=n;i>=1;i--) { while(a[sta[top]]<a[i])top--; rp[i]=sta[top],sta[++top]=i; } for(i=1;i<=n;i++) { if(lp[i]!=0&&rp[i]!=n+1) v[++cnt]=Node(lp[i],rp[i],rp[i],p1); if(i<n) v[++cnt]=Node(i,i+1,i+1,p1); if(lp[i]!=0&&rp[i]-i>1) v[++cnt]=Node(lp[i],i+1,rp[i]-1,p2); if(rp[i]!=n+1&&i-lp[i]>1) v[++cnt]=Node(rp[i],lp[i]+1,i-1,p2); } sort(v+1,v+cnt+1,cmp); for(i=j=1;i<=n;i++) { root[i]=root[i-1]; while(j<=cnt&&v[j].x==i) insert(v[j].l,v[j].r,v[j].p,1,n,root[i],root[i]),j++; } while(m--) { x=rd(),y=rd(); printf("%lld ",query(x,y,1,n,root[x-1],root[y])); } return 0; }
小结:好题。