题目
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT
链接
https://leetcode.com/problems/divide-two-integers/
答案
1、int的最大值MAX_INT为power(2,31)-1 = 2147483647
2、int的最小值MIN_INT为-power(2,31) = -2147483648
3、当MIN_INT除以-1的时候,发生溢出,因为得到的值大于MAX_INT
4、有符号数的最高位为1时,表示负数,所以可以使用异或运算获得商的符号
5、abs的各种版本看这里,double abs(double),long abs(long)竟然在C++中有,其实我想自己写个求绝对值方法的,不过,手抖还是搜了一下abs的原型。
6、这才是重中之重,刚开始看到题目,我不知道怎么用位运算去实现除法,先搜到答案
然后思考其中的原理,为什么可以这么做,思考之后自己才写了代码。
我的推理如下,如有问题,请指出,谢谢。下面我有^表示指数,不要跟C++中的^弄混了。
a = b * x (x为要求的商,等号应该为约等于,其实嘛,应该是a >= b * x && a < b * (x+1))
任何一个整数是可以用二进制表示的,所以x=2^m + 2^n + ...... + 2^t,其中m > n > t,m,n,t为整数。
x还可以这么表示x = 1*2^m + 0 * 2^(m-1) + 1 * 2^(m-2) + ...... + (1或0)*2^0。
事实上x还可以这么表示:
x = (2^k + 2^(k-1) + ...... + 2^0) + (2^t + 2^(t-1) + ...... + 2^0) + ...... + (2^r + 2^(r-1) + ...... + 2^0),其中k > t > ...... > r。
所以 a = b * (2^k + 2^(k-1) + ...... + 2^0) +b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0).
并且k,t,r等满足以下关系:
b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0) - b * (2^t + 2^(t-1) + ...... + 2^0)
第一次是 a - b * (2^k + 2^(k-1) + ...... + 2^0) = b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0)
对b进行不断左移,即上式的橙色部分,而并累加位移(2^x')是x的一部分,将a不断减去不断左移后的b,即可得到等式左边的数据。
a - b * (2^k + 2^(k-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
即b * (2^t + 2^(t-1) + ...... + 2^0) + ...... + b * (2^r + 2^(r-1) + ...... + 2^0) < b * (2^k + 2^(k-1) + ...... + 2^0)
这个是必然成立的,如果不成立,则b还可以继续左移,即k的值要比当前达到的k还要大,故每次a处理后的结果会比b处理后的结果要小。
第二次是a - b * (2^k + 2^(k-1) + ...... + 2^0) - b * (2^t + 2^(t-1) + ...... + 2^0) = ...... + b * (2^r + 2^(r-1) + ...... + 2^0)
蓝色部分为第一次的结果。
推到这里,大家应该懂了
代码
1 class Solution { 2 public: 3 static const int MAX_INT = 2147483647; 4 static const int MIN_INT = -2147483648; 5 6 int divide(int dividend, int divisor) { 7 if(dividend == MIN_INT && divisor == -1) 8 { 9 return MAX_INT; 10 } 11 12 long pre = abs((long)dividend); 13 long post = abs((long)divisor); 14 int index; 15 int rem = 0; 16 17 while(pre >= post) 18 { 19 long tmp = post; 20 for(index = 0; pre >= tmp; index ++, tmp <<= 1) 21 { 22 pre -= tmp; 23 rem += (1 << index); 24 } 25 } 26 27 return (dividend >> 31) ^ (divisor >> 31) ? -rem:rem; 28 } 29 };