• Python pandas Date


    Pandas主要有4中与时间相关的类型。Timestamp, Period, DatetimeIndex,PeriodIndex.

    import pandas as pd
    import numpy as np
    #
    #Timestamp
    pd.Timestamp('9/1/2016 10:05AM')
    #output: Timestamp('2016-09-01 10:05:00')
    #
    #Period
    pd.Period('1/2016')
    #output: Period('2016-01', 'M')
    pd.Period('3/5/2016')
    #output: Period('2016-03-05', 'D')
    #
    #DatetimeIndex
    t1 = pd.Series(list('abc'), [pd.Timestamp('2016-09-01'), pd.Timestamp('2016-09-02'), pd.Timestamp('2016-09-03')])
    t1
    """
    2016-09-01    a
    2016-09-02    b
    2016-09-03    c
    dtype: object
    """
    type(t1.index)
    #pandas.tseries.index.DatetimeIndex
    
    #
    #PeriodIndex
    t2 = pd.Series(list('def'), [pd.Period('2016-09'), pd.Period('2016-10'), pd.Period('2016-11')])
    t2
    """
    2016-09    d
    2016-10    e
    2016-11    f
    Freq: M, dtype: object
    """
    type(t2.index)
    # pandas.tseries.period.PeriodIndex

    1. 关于时间类型的转换

    #Converting-to-Datetime
    d1 = ['2 June 2013', 'Aug 29, 2014', '2015-06-26', '7/12/16']
    ts3 = pd.DataFrame(np.random.randint(10, 100, (4,2)), index=d1, columns=list('ab'))
    ts3

    ts3.index = pd.to_datetime(ts3.index)
    ts3

    pd.to_datetime('4.7.12', dayfirst=True)
    #output: Timestamp('2012-07-04 00:00:00')

    2. 时间间隔

    ##Timedeltas
    pd.Timestamp('9/3/2016')-pd.Timestamp('9/1/2016')
    # Timedelta('2 days 00:00:00')
    pd.Timestamp('9/2/2016 8:10AM') + pd.Timedelta('12D 3H')
    # Timestamp('2016-09-14 11:10:00')

    3. Dataframe中的时间

    dates = pd.date_range('10-01-2016', periods=9, freq='2W-SUN')
    dates
    """
    DatetimeIndex(['2016-10-02', '2016-10-16', '2016-10-30', '2016-11-13',
                   '2016-11-27', '2016-12-11', '2016-12-25', '2017-01-08',
                   '2017-01-22'],
                  dtype='datetime64[ns]', freq='2W-SUN')
    """
    df = pd.DataFrame({'Count 1': 100 + np.random.randint(-5, 10, 9).cumsum(),
                      'Count 2': 120 + np.random.randint(-5, 10, 9)}, index=dates)
    df

    df.index.weekday_name
    """
    array(['Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday',
           'Sunday', 'Sunday', 'Sunday'], dtype=object)
    """
    df.diff()

    df.resample('M').mean()

    df['2017']

    df['2016-12']

    df['2016-12':]

    The Safest Way to Get what you Want is to Try and Deserve What you Want.
  • 相关阅读:
    SharePoint Framework (SPFx) 开发入门教程
    SharePoint 2013 Designer 入门教程
    SharePoint 2013 开发教程
    SharePoint 2013 入门教程
    SharePoint Online 部署SPFx Web部件
    SharePoint Online SPFx Web部件绑定数据
    SharePoint Online 创建SPFx客户端Web部件
    SharePoint Online 配置框架(SPFx)开发环境
    SharePoint Online 创建应用程序目录
    SharePoint Online 启用 IRM
  • 原文地址:https://www.cnblogs.com/Shinered/p/9231619.html
Copyright © 2020-2023  润新知