• 系统综合实践第七次作业


    (1) 在树莓派中安装opencv库

    参考1 参考2

    (1)安装依赖

    sudo apt-get update && sudo apt-get upgrade
    sudo apt-get install build-essential cmake pkg-config
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    sudo apt-get install libatlas-base-dev gfortran
    sudo apt-get install python2.7-dev python3-dev
    

    偶尔有几个卡壳的就加上--fix-missing再执行几次

    (2)下载OpenCV源码

    cd ~
    wget -O opencv.zip https://github.com/Itseez/opencv/archive/4.1.2.zip
    unzip opencv.zip
    wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/archive/4.1.2.zip
    unzip opencv_contrib.zip
    #最好挂tz加快速度
    

    (3)安装pip

    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    

    (4)安装Python虚拟机

    sudo pip install virtualenv virtualenvwrapper
    sudo rm -rf ~/.cache/pip
    
    • 配置~/.profile ,添加如下,并使用source ~/.profile生效
    export WORKON_HOME=$HOME/.virtualenvs
    export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
    export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
    source /usr/local/bin/virtualenvwrapper.sh
    export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin
    
    • 使用Python3安装虚拟机
     mkvirtualenv cv -p python3
    
    • 进入虚拟机
    source ~/.profile && workon cv
    

    ​ 可以看到前面有cv虚拟机的标识

    • 安装numpy
    pip install numpy
    

    (5)编译OpenCV

    cd ~/opencv-4.1.2/
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=RELEASE 
        -D CMAKE_INSTALL_PREFIX=/usr/local 
        -D INSTALL_PYTHON_EXAMPLES=ON 
        -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.1.2/modules 
        -D BUILD_EXAMPLES=ON ..
    

    要确保路径齐全

    • 增大交换区内存到1024

    • 重启swap服务并开始编译

      sudo /etc/init.d/dphys-swapfile stop && sudo /etc/init.d/dphys-swapfile start
      make -j4
      
    • 1小时+后看到编译完成

    (6)安装opencv

    sudo make install
    sudo ldconfig
    
    • 检查安装位置

    (7)验证安装

    • 退出python虚拟机命令deactivate

    (2) 使用opencv和python控制树莓派的摄像头

    参考1 参考2

    • 安装picamera(虚拟机环境下)

      source ~/.profile
      workon cv
      pip install "picamera[array]"
      

    • 使用python和opencv控制摄像头

      # import the necessary packages
      from picamera.array import PiRGBArray
      from picamera import PiCamera
      import time
      import cv2
      # initialize the camera and grab a reference to the raw camera capture
      camera = PiCamera()
      rawCapture = PiRGBArray(camera)
      # allow the camera to warmup
      time.sleep(1)
      # grab an image from the camera
      camera.capture(rawCapture, format="bgr")
      image = rawCapture.array
      # display the image on screen and wait for a keypress
      cv2.imshow("Image", image)
      cv2.waitKey(0)
      

    (3) 利用树莓派的摄像头实现人脸识别

    参考1

    • 安装所需库

      pip install dlib &&
      pip install face_recognition &&
      pip install numpy	#前面安装过就不用了
      

    • 同目录下放置一张用于识别test.jpg

    (1)基于picamera的人脸识别

    isLeiJun.py
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("test.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "雷军"
    
            print("I see someone named {}!".format(name))
    

    (2)基于opencv的人脸识别

    recognition_opcv.py
    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    leijun_image = face_recognition.load_image_file("leijun.jpg")
    leijun_face_encoding = face_recognition.face_encodings(leijun_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    liuzuohu_image = face_recognition.load_image_file("liuzuohu.jpg")
    liuzuohu_face_encoding = face_recognition.face_encodings(liuzuohu_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        leijun_face_encoding,
        liuzuohu_face_encoding
    ]
    known_face_names = [
        "LeiJun",
        "LiuZuoHu"
    ]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
    
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    (4) 结合微服务的进阶任务

    (1)使用微服务,部署opencv的docker容器(要能够支持arm),并在opencv的docker容器中跑通(3)的示例代码facerec_on_raspberry_pi.py

    • 准备操作

      #退出python虚拟机
      deactivate
      #脚本安装docker
      sudo curl -sSL https://get.docker.com | sh
      #填加用户到docker组
      sudo usermod -aG docker pi
      #重新登陆以用户组生效
      exit && ssh pi@raspiberry
      #验证docker版本
      docker --version
      

    • 创建对应目录

    • 拉取arm可用的docker镜像

      docker pull sixsq/opencv-python
      
    • 进入容器并安装所需库

      docker run -it [imageid] /bin/bash
      pip install "picamera[array]" dlib face_recognition
      

    • comiit镜像

      docker commit [containerid] my-opencv
      
    • 自定义镜像

      • Dockerfile

        FROM my-opencv
        
        MAINTAINER GROUP13
        
        RUN mkdir /myapp
        
        WORKDIR /myapp
        
        ENTRYPOINT ["python3"]
        
      • 生成镜像

        docker build -t my-opencv-test .
        
      • 运行脚本

        docker run -it --rm --name my-running-py -v ${PWD}/workdir:/myapp --device=/dev/vchiq --device=/dev/video0 my-opencv-test isLeiJun.py
        

    (2)选做:在opencv的docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py

    采用的是在Windows上通过ssh连接树莓派并传送X11数据 参考1 参考2

    • 环境准备

      • windows端安装XMing

      • 检测ssh配置文件中X11是否开启 cat /etc/ssh/sshd_config

      • 支持X11转发的ssh客户端

        由于安装XMing的时候创建了链接到putty,所以此处打个勾就行

      • 查看DISPLAY环境变量值printenv

    • 编辑启动脚本 run.sh

      xhost +	#允许来自任何主机的连接
      docker run -it 
              --rm 
              -v ${PWD}/workdir:/myapp 
              --net=host 
              -v $HOME/.Xauthority:/root/.Xauthority 
              -e DISPLAY=:10.0  	#此处填写上面查看到的变量值
              -e QT_X11_NO_MITSHM=1 
              --device=/dev/vchiq 
              --device=/dev/video0 
              --name my-running-py 
              my-opencv-test 
              recognition.py
      
    • 执行脚本su run.sh

      效果同上,不再录制视频了

    (5) 以小组为单位,发表一篇博客,记录遇到的问题和解决方法,提供小组成员名单以及在线协作的图片

    (1)踩过的坑

    • 原本使用windows terminal ssh连接树莓派时找不到DISPLAY环境变量,即使使用了 ssh -X pi@raspi
      • 后面换了putty,打勾一下X11转发即可
    • 期间各种下载和安装依赖实在慢
      • 直接在路由器端转发国外的流量到代理,也不用一直换源了
    • 一开始插入视频标签无法显示

    (2)小组成员名单

    • 031702626杨世杰
    • 031702625杨蓝宇
    • 171709012沈鸿骁

    (3)在线协作图片

    • 采用的是群内分享屏幕,三位同学一起查找资料和解决困难,由杨世杰进行主要操作

  • 相关阅读:
    timeout in asp.net
    ASP.NET_SessionId vs .ASPXAUTH why do we need both of them?
    Visual paradigm软件介绍
    OJ网站程序员必备
    c++异常详解
    C++STL之双端队列容器
    GPU的线程模型和内存模型
    C++ 中memset 勿要对类使用
    trait与policy模板技术
    C++标准库
  • 原文地址:https://www.cnblogs.com/ShenHXbloc/p/13088005.html
Copyright © 2020-2023  润新知