• C. Andryusha and Colored Balloons (染色 + DFS暴力)


    output
    standard output

    Andryusha goes through a park each day. The squares and paths between them look boring to Andryusha, so he decided to decorate them.

    The park consists of n squares connected with (n - 1) bidirectional paths in such a way that any square is reachable from any other using these paths. Andryusha decided to hang a colored balloon at each of the squares. The baloons' colors are described by positive integers, starting from 1. In order to make the park varicolored, Andryusha wants to choose the colors in a special way. More precisely, he wants to use such colors that if ab and c are distinct squares that a and b have a direct path between them, and b and c have a direct path between them, then balloon colors on these three squares are distinct.

    Andryusha wants to use as little different colors as possible. Help him to choose the colors!

    Input

    The first line contains single integer n (3 ≤ n ≤ 2·105) — the number of squares in the park.

    Each of the next (n - 1) lines contains two integers x and y (1 ≤ x, y ≤ n) — the indices of two squares directly connected by a path.

    It is guaranteed that any square is reachable from any other using the paths.

    Output

    In the first line print single integer k — the minimum number of colors Andryusha has to use.

    In the second line print n integers, the i-th of them should be equal to the balloon color on the i-th square. Each of these numbers should be within range from 1 to k.

    Examples
    input
    Copy
    3
    2 3
    1 3
    output
    Copy
    3
    1 3 2
    input
    Copy
    5
    2 3
    5 3
    4 3
    1 3
    output
    Copy
    5
    1 3 2 5 4
    input
    Copy
    5
    2 1
    3 2
    4 3
    5 4
    output
    Copy
    3
    1 2 3 1 2
    Note

    In the first sample the park consists of three squares: 1 → 3 → 2. Thus, the balloon colors have to be distinct.

    Illustration for the first sample.

    In the second example there are following triples of consequently connected squares:

    • 1 → 3 → 2
    • 1 → 3 → 4
    • 1 → 3 → 5
    • 2 → 3 → 4
    • 2 → 3 → 5
    • 4 → 3 → 5
    We can see that each pair of squares is encountered in some triple, so all colors have to be distinct.
    Illustration for the second sample.

    In the third example there are following triples:

    • 1 → 2 → 3
    • 2 → 3 → 4
    • 3 → 4 → 5
    We can see that one or two colors is not enough, but there is an answer that uses three colors only.
    Illustration for the third sample.
    #include <bits/stdc++.h>
    #define mem(arr,xxx) memset(arr,xxx,sizeof(x) )
    const int mxn = 2e5+10;
    using namespace std;
    int n,x,y,vis[mxn],col[mxn];
    vector <int>G[mxn];
    void DFS(int in , int pre)
    {
        int cnt = 1 ;
        for(int i=0;i<G[in].size();i++) //图与点相邻的所有点
        {
            if( G[in][i] != pre )
            {
                while( col[in] == cnt || cnt == col[pre] )
                    cnt++; //判断是否与前面连个点颜色是否相同
                col[ G[in][i] ] = cnt++;
            }
        }
        for(int i=0;i<G[in].size();i++)
        {
            if(G[in][i]!=pre)
                DFS( G[in][i] , in ); //可以理解为回溯
        }
    }
    int main()
    {
        while(cin>>n)
        {
            for(int i=1;i<=n;i++) G[i].clear();
            for(int i=1;i<n;i++)
            {
                cin>>x>>y;
                G[x].push_back(y);
                G[y].push_back(x);
            }
            mem(col,0);
            col[1] = 1;
            DFS(1,0);
            cout<<(int)*max_element(col+1,col+1+n)<<endl;
            for(int i=1;i<=n;i++)
                cout<<col[i]<<" ";
            cout<<endl;
        }
        return 0;
    }

     

    所遇皆星河
  • 相关阅读:
    定时器
    sortable.js 华丽丽的排序
    jqGrid一些操作
    session 共享
    数组排序 和 二分法查找
    关于map
    文件导入
    文件导出
    文件下载
    float 保留两位小数
  • 原文地址:https://www.cnblogs.com/Shallow-dream/p/11912266.html
Copyright © 2020-2023  润新知