1.读取
# 读取数据 def read_dataset(): # 打开csv文件 sms = open('../data/SMSSpamCollection', 'r', encoding='utf-8') sms_label = [] # 标题 sms_data = [] # 数据 # 读取csv数据 csv_reader = csv.reader(sms, delimiter=' ') for line in csv_reader: sms_label.append(line[0]) # 提取出标签 sms_data.append(preprocessing(line[1])) # 对每封邮件做预处理 sms.close() return sms_data, sms_label
2.数据预处理
# 预处理 def preprocessing(text): tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 分词 stops = stopwords.words('english') # 使用英文的停用词表 tokens = [token for token in tokens if token not in stops] # 停用词 tokens = [token.lower() for token in tokens if len(token) >= 3] # 大小写,短词 lmtzr = WordNetLemmatizer() tag = nltk.pos_tag(tokens) # 词性 tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)] # 词性还原 preprocessed_text = ' '.join(tokens) return preprocessed_text
3.数据划分—训练集和测试集数据划分
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)
# 3、划分数据集 def split_dataset(data, label): x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label) return x_train, x_test, y_train, y_test
4.文本特征提取
sklearn.feature_extraction.text.CountVectorizer
sklearn.feature_extraction.text.TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
观察邮件与向量的关系
向量还原为邮件
# 向量还原邮件 def revert_mail(x_train, X_train, model): s = X_train.toarray()[0] print("第一封邮件向量表示为:", s) # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index) a = np.flatnonzero(X_train.toarray()[0]) # 非零元素的位置(index) print("非零元素的位置:", a) print("向量的非零元素的值:", s[a]) b = model.vocabulary_ # 词汇表 key_list = [] for key, value in b.items(): if value in a: key_list.append(key) # key非0元素对应的单词 print("向量非零元素对应的单词:", key_list) print("向量化之前的邮件:", x_train[0])
4.模型选择
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
说明为什么选择这个模型?
# 5、模型选择 def mnb_model(x_train, x_test, y_train, y_test): mnb = MultinomialNB() mnb.fit(x_train, y_train) pre = mnb.predict(x_test) print("总数:", len(y_test)) print("预测正确数:", (pre == y_test).sum()) print("预测准确率:",sum(pre == y_test) / len(y_test)) return pre
5.模型评价:混淆矩阵,分类报告
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_predict)
说明混淆矩阵的含义
from sklearn.metrics import classification_report
说明准确率、精确率、召回率、F值分别代表的意义
from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import confusion_matrix, classification_report import numpy as np import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import csv # 根据词性,生成还原参数pos def get_wordnet_pos(treebank_tag): if treebank_tag.startswith('J'): # 形容词 return nltk.corpus.wordnet.ADJ elif treebank_tag.startswith('V'): # 动词 return nltk.corpus.wordnet.VERB elif treebank_tag.startswith('N'): # 名词 return nltk.corpus.wordnet.NOUN elif treebank_tag.startswith('R'): # 副词 return nltk.corpus.wordnet.ADV else: return nltk.corpus.wordnet.NOUN # 数据预处理 def preprocessing(text): tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 分词 stops = stopwords.words('english') # 使用英文的停用词表 tokens = [token for token in tokens if token not in stops] # 停用词 tokens = [token.lower() for token in tokens if len(token) >= 3] # 大小写、长度<3 tag = nltk.pos_tag(tokens) # 词性 lmtzr = WordNetLemmatizer() tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)] # 词性还原 preprocessed_text = ' '.join(tokens) return preprocessed_text # 读取数据 def read_dataset(): # 打开csv文件 sms = open('../data/SMSSpamCollection', 'r', encoding='utf-8') sms_label = [] # 标题 sms_data = [] # 数据 # 读取csv数据 csv_reader = csv.reader(sms, delimiter=' ') for line in csv_reader: sms_label.append(line[0]) # 提取出标签 sms_data.append(preprocessing(line[1])) # 对每封邮件做预处理 sms.close() return sms_data, sms_label # 划分数据集 def split_dataset(data, label): x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label) return x_train, x_test, y_train, y_test # 把原始文本转化为tf-idf的特征矩阵 def tfidf_dataset(x_train, x_test): tfidf = TfidfVectorizer() X_train = tfidf.fit_transform(x_train) # X_train用fit_transform生成词汇表 X_test = tfidf.transform(x_test) # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作 return X_train, X_test, tfidf # 向量还原邮件 def revert_mail(x_train, X_train, model): s = X_train.toarray()[0] print("第一封邮件向量表示为:", s) # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index) a = np.flatnonzero(X_train.toarray()[0]) # 非零元素的位置(index) print("非零元素的位置:", a) print("向量的非零元素的值:", s[a]) b = model.vocabulary_ # 词汇表 key_list = [] for key, value in b.items(): if value in a: key_list.append(key) # key非0元素对应的单词 print("向量非零元素对应的单词:", key_list) print("向量化之前的邮件:", x_train[0]) # 模型选择(根据数据特点选择多项式分布) def mnb_model(x_train, x_test, y_train, y_test): mnb = MultinomialNB() mnb.fit(x_train, y_train) ypre_mnb = mnb.predict(x_test) print("总数:", len(y_test)) print("预测正确数:", (ypre_mnb == y_test).sum()) return ypre_mnb # 模型评价:混淆矩阵,分类报告 def class_report(ypre_mnb, y_test): conf_matrix = confusion_matrix(y_test, ypre_mnb) print("**********************************************************") print("混淆矩阵: ", conf_matrix) c = classification_report(y_test, ypre_mnb) print("**********************************************************") print("分类报告: ", c) print("**********************************************************") print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix)) if __name__ == '__main__': sms_data, sms_label = read_dataset() # 读取数据集 x_train, x_test, y_train, y_test = split_dataset(sms_data, sms_label) # 划分数据集 X_train, X_test, tfidf = tfidf_dataset(x_train, x_test) # 把原始文本转化为tf-idf的特征矩阵 revert_mail(x_train, X_train, tfidf) # 向量还原成邮件 y_mnb = mnb_model(X_train, X_test, y_train, y_test) # 模型选择 class_report(y_mnb, y_test) # 模型评价
6.比较与总结
如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?
TfidfVectorizer:①除了考量某词汇在本文本出现的频率,还关注包含这个词汇的其他文本的数量;②能够削减高频没有意义的词汇出现带来的影响,挖掘更有意义的特征。