orz 首先说一下这个只是民间题解,可能会有很多错误
程序还没有评测,所以可能存在问题
C题比赛的时候没想到。。后来发现是个模板题,所以没有代码
希望这份题解能对读者有所启发吧。。。
A题
直接倒序枚举即可
因为一个数n最短减sqrt(n)次就可以变成回文数
所以复杂度是sqrt(n)的
(也可以利用字符串做法,会更快)
#include <iostream> #include <cstring> #include <cstdio> using namespace std; inline bool ok(int x){ int a[10], n = 0; while(x != 0){ a[n++] = x%10; x/=10; } for(int i = 0; i < n; i++){ if(a[i] != a[n-i-1]) return false; } return true; } int huiwen(int x){ for(int i = x; i >= 0; i--){ if(ok(i)) return i; } return 0; } int x; int main(){ cin>>x; if(x == 0) { cout<<x<<endl; return 0; } while(x != 0){ int y = huiwen(x); if(y == 0) break; cout<<y<<endl; x -= y; } }
B题
动态规划,不妨设当前已经规划完了前面i个点的分配方案
即dp[i][m]表示从第i点以后要用m条边来匹配,所能获得的最大权值
那么如果一个方案合法就必须满足,之前的分配数x和y之间有
x - (i-1)*(i-2) <= y 也就是之前区间相互连接,这样会使与后方连的边尽量少
那么如果x - (i-1)*(i-2) > y ,意思就是之前区间不管如何连接,后方不可能与前方匹配
比如4 4 4 2 2这种情况, 后面的2个2是无法与前面的3个4匹配,即不合法
还有就是后面每个都至少分配一条边
所以每次dp都需要判断一下这两个条件
然后我们还可以发现,我们只需要给出一个2*m的合法拆分方案,就是一个合法的解,跟给出顺序是无关的
所以不妨设第一个点分配最多的边,剩下的大小也是按照次序的
这样会给dp带来很大方便
然后利用记忆化搜索来dp就很好写了
(代码中注释掉的那一部分可以给出一个方案)
#include <iostream> #include <cstring> #include <cstdio> using namespace std; typedef long long LL; LL dp[501][2002], a[501], G[501][2002], H[501][2002]; int n, m, M; const LL inf = 1e8; LL dfs(int x, int m, int Max){ if(n-x+1 > m) return -inf; if(M - m - (x-1)*(x-2) > m) return -inf; if(x == n) if(m <= n-1 && m <= Max) return a[m]; else return -inf; if(H[x][m] > 0) return dp[x][m]; H[x][m] = 1; for(int i = min(n-1, min(Max, m)); i >= 1; i--){ int k = dfs(x+1, m-i, i) + a[i]; if(k > 0){ if(k > dp[x][m]){ dp[x][m] = k; G[x][m] = m-i; } } } return dp[x][m]; } int main(){ cin>>n>>m; M = 2*m; for(int i = 1; i < n; i++) cin>>a[i]; for(int i = 1; i <= n; i++) for(int j = 1; j <= 2*m; j++) dp[i][j] = -inf; cout<<dfs(1, 2*m, m)<<endl; /*int x = M; for(int i = 1; i <= n; i++){ cout<<G[i][x]<<" "; x = G[i][x]; }*/ }
C题
费用流,最长K可重区间集问题
模板题
见http://hzwer.com/5842.html
D题
计算几何
不妨先把凸多边形的每条边,往它的单位向量的法向量方向平移r的长度
这样构成了一个新的凸多边形,
在这个新的凸多边形求最远的那两个点就是答案
构成新的凸多边形的过程需要用到半平面交算法(模板)
求最远的两个点需要用到旋转卡壳算法(模板)
所以就是模板题
#include <iostream> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> using namespace std; const int maxn = 200500; const double eps = 1e-7; struct Vector{ double x, y; Vector(double _x=0, double _y=0):x(_x), y(_y) {} double len() { return sqrt(x*x + y*y); } Vector operator /(double v){ return Vector(x/v, y/v); } Vector operator *(double v){ return Vector(x*v, y*v); } void print(){ cout<<x<<" "<<y<<endl; } }points[maxn], pp[maxn], px, py; typedef Vector Point; Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator < (const Point &A, const Point &B) { return (A.x == B.x) ? A.y < B.y : A.x < B.x; } double Distance(Point A, Point B) { return sqrt(pow(A.x - B.x, 2) + pow(A.y - B.y, 2)); } struct Line{ Point p; Vector v; double ang; Line() {} Line(Point A, Point B){ p = A; v = (A-B)/Distance(A, B); ang = atan2(v.y, v.x); } bool operator <(const Line &L) const { return ang < L.ang; } }lines[maxn]; double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } bool OnLeft(Line L, Point p){ return Cross(L.v, p - L.p) > 0; } Point GetIntersection(Line a, Line b){ Vector u = a.p - b.p; double t = Cross(b.v, u)/Cross(a.v, b.v); return a.p+a.v*t; } int HalfplaneIntersection(Line *L, int n, Point *poly){ sort(L, L+n); int first, last; Point *p = new Point[n]; Line *q = new Line[n]; q[first = last = 0] = L[0]; for(int i = 1; i < n; i++){ while(first < last && !OnLeft(L[i], p[last-1])) last--; while(first < last && !OnLeft(L[i], p[first])) first++; q[++last] = L[i]; if(fabs(Cross(q[last].v, q[last-1].v)) < eps){ last--; if(OnLeft(q[last], L[i].p)) q[last] = L[i]; } if(first < last) p[last-1] = GetIntersection(q[last-1], q[last]); } while(first < last && !OnLeft(q[first], p[last-1])) last--; if(last - first <= 1) return 0; p[last] = GetIntersection(q[last], q[first]); int m = 0; for(int i = first; i <= last; i++) poly[m++] = p[i]; return m; } int n, r; int main(){ cin>>n>>r; cin>>points[0].x>>points[0].y; for(int i = 1; i < n; i++){ cin>>points[i].x>>points[i].y; lines[i-1] = Line(points[i-1], points[i]); } lines[n-1] = Line(points[n-1], points[0]); for(int i = 0; i < n; i++){ Vector v = lines[i].v; v = Vector(-v.y, v.x); v = v/v.len(); lines[i].p = lines[i].p + v*r; //lines[i].p.print(); } int N = HalfplaneIntersection(lines, n, pp); pp[N] = pp[0]; int now = 1; double ans = 0; //cout<<N<<endl; for(int i = 0; i < N; i++){ while(Cross(pp[i+1]-pp[i], pp[now]-pp[i]) < Cross(pp[i+1]-pp[i], pp[now+1]-pp[i])){ now++; if(now == N) now = 0; } if(Distance(pp[now], pp[i]) > ans){ ans = Distance(pp[now], pp[i]); px = pp[now]; py = pp[i]; } } cout<<px.x<<" "<<px.y<<" "; cout<<py.x<<" "<<py.y<<endl; }
E题
bfs问题
利用宽度优先搜索和哈希判重,可以很快做出来
因为状态数 9!只有10^5的数量级
这样可以得到很多分数,但是询问过多,也会超时
所以直接以最后的结果为根,然后建立一个搜索树
这样每次查询都是询问父亲到根的一条链
因为深度不超过32
所以每次查询的复杂度也就只有O(32)
就可以通过了
(如果发现结点不在树上,就是无解)
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <queue> #define mp make_pair #define fi first #define se second using namespace std; typedef long long LL; typedef pair<LL, int> PLI; typedef pair<int, int> PII; const int MOD = 123456; const int dx[4] = {0, 1, 0, -1}; const int dy[4] = {1, 0, -1, 0}; const char ch[4] = {'u', 'l', 'd', 'r'}; vector<char> V; vector<PLI> G[MOD+1]; vector<PII> pa; LL Pow[20]; LL get(int r, int c){ return Pow[(2-r)*3 + (2-c)]; } void Hinsert(LL x, int v){ G[x%MOD].push_back(mp(x, v)); } int Hfind(LL x){ for(int i = 0; i < G[x%MOD].size(); i++){ PII u = G[x%MOD][i]; if(u.fi == x) return u.se; } return -1; } void Herase(){ for(int i = 0; i < MOD; i++) G[i].clear(); } int n, tot, x; LL nowS; queue<PLI> Q; queue<PII> Qxy; int main(){ freopen("我钦定wps第一", "r", stdin); Pow[0] = 1; for(int i = 1; i < 12; i++) Pow[i] = Pow[i-1]*10; Q.push(mp(123456780, 0)); Qxy.push(mp(2, 2)); Hinsert(123456780, 0); pa.push_back(mp(0, 0)); while(!Q.empty()){ PLI x = Q.front(); Q.pop(); PII loc = Qxy.front(); Qxy.pop(); if(x.se >= 1000) break; //cout<<x.fi<<endl; for(int i = 0; i < 4; i++){ int newx = loc.fi + dx[i]; int newy = loc.se + dy[i]; if(newx < 0 || newx > 2) continue; if(newy < 0 || newy > 2) continue; int t = x.fi/get(newy, newx)%10; LL newS = x.fi - t*get(newy, newx) + t*get(loc.se, loc.fi); if(Hfind(newS) == -1){ Hinsert(newS, ++tot); pa.push_back(mp(Hfind(x.fi), i)); Q.push(mp(newS, x.se+1)); Qxy.push(mp(newx, newy)); } } } cin>>n; while(n--){ LL state = 0; for(int i = 0; i < 9; i++) cin>>x, state = state*10 + x; if(Hfind(state) != -1){ x = Hfind(state); while(x != 0){ cout<<ch[pa[x].se]; x = pa[x].fi; } cout<<endl; } else cout<<"unsolvable"<<endl; } }
F题
矩阵优化问题
考虑由递推式构造一个线性变换矩阵
a[i] = p*a[i-1] + (q-p)*a[i-2] + m*i^c
把i^c看成b[i]
因为c小于等于2, 那么线性变换矩阵就A可以这样构造
1 1 1
0 1 2
0 0 1
这个矩阵乘i次后,A[0][0] = 1, A[1][1] = i, A[2][2] = i^2
然后和a[i]的递推式合在一起
就是1 1 1 0 0
0 1 2 0 0
0 0 1 0 0
0 0 0 0 q-p
0 0 0 1 p
只需要在A[c][4]的位置填上m就可以了
最后A自乘(n-3)次,与行向量(1, 3, 9, a1, a2)乘起来就是答案
矩阵可以进行快速幂,所以复杂度是O(logn)
#include <iostream> #include <cstring> #include <cstdio> using namespace std; const int MOD = 10007; int Mn = 5; typedef long long LL; struct Matrix{ LL mat[10][10]; Matrix() { memset(mat, 0, sizeof(mat)); } Matrix operator *(const Matrix &B) const{ Matrix ans; for(int i = 0; i < Mn; i++){ for(int j = 0; j < Mn; j++){ LL temp = 0; for(int k = 0; k < Mn; k++) (temp += mat[i][k]*B.mat[k][j]) %= MOD; ans.mat[i][j] = (temp + MOD) % MOD; } } return ans; } void print(){ for(int i = 0; i < Mn; i++){ for(int j = 0; j < Mn; j++) cout<<mat[i][j]<<" "; cout<<endl; } } }A; Matrix powmod(Matrix A, int b){ Matrix ans; for(int i = 0; i < Mn; i++) ans.mat[i][i] = 1; for(; b; b >>= 1, A = A*A) if(b&1) ans = ans*A; return ans; } int a1, a2, p, q, m, c, n; int main(){ cin>>a1>>a2>>p>>q>>m>>c>>n; if(n == 1) { cout<<a1<<endl; return 0; } if(n == 2) { cout<<a2<<endl; return 0; } A.mat[0][0] = A.mat[1][1] = A.mat[2][2] = A.mat[4][3] = 1; A.mat[4][4] = p; A.mat[3][4] = q-p; A.mat[0][2] = 1; A.mat[0][1] = 1; A.mat[1][2] = 2; A.mat[c][4] = m; A = powmod(A, n-2); LL a[5] = {1, 3, 9, a1, a2}, ans = 0; for(int i = 0; i < 5; i++) (ans += A.mat[i][4]*a[i]) %= MOD; cout<<ans<<endl; }
G 题
离线莫队算法
将询问分块,使得普通暴力的时间也能在n*sqrt(n)的时间内跑完
可以自行搜索莫队算法,算是模板题了
#include <iostream> #include <cstring> #include <cstdio> #include <cmath> #include <vector> #include <algorithm> #define pb push_back using namespace std; const int maxn = 50050; int a[maxn], b[maxn], numa[maxn], numb[maxn], va[maxn], vb[maxn], ANS[maxn]; int ans, n, m, k, x, y; struct Data{ int l, r, id, rank; bool operator <(const Data& B) const{ return rank == B.rank ? r < B.r : rank < B.rank; } }; vector<Data> Q; inline void Insert(int x){ int aa = a[x]^numa[a[x]], bb = b[x]^numb[b[x]]; ans -= numa[a[x]]*vb[aa^k]; ans -= va[bb^k]*numb[b[x]]; if((aa^k) == bb) ans += numa[a[x]]*numb[b[x]]; va[aa] -= numa[a[x]]; vb[bb] -= numb[b[x]]; numa[a[x]]++; numb[b[x]]++; aa = a[x]^numa[a[x]], bb = b[x]^numb[b[x]]; va[aa] += numa[a[x]]; vb[bb] += numb[b[x]]; ans += numa[a[x]]*vb[aa^k]; ans += va[bb^k]*numb[b[x]]; if((aa^k) == bb) ans -= numa[a[x]]*numb[b[x]]; } inline void Erase(int x){ int aa = a[x]^numa[a[x]], bb = b[x]^numb[b[x]]; ans -= numa[a[x]]*vb[aa^k]; ans -= va[bb^k]*numb[b[x]]; if((aa^k) == bb) ans += numa[a[x]]*numb[b[x]]; va[aa] -= numa[a[x]]; vb[bb] -= numb[b[x]]; numa[a[x]]--; numb[b[x]]--; aa = a[x]^numa[a[x]], bb = b[x]^numb[b[x]]; va[aa] += numa[a[x]]; vb[bb] += numb[b[x]]; ans += numa[a[x]]*vb[aa^k]; ans += va[bb^k]*numb[b[x]]; if((aa^k) == bb) ans -= numa[a[x]]*numb[b[x]]; } int main(){ cin>>n>>m>>k; for(int i = 1; i <= n; i++) scanf("%d", &a[i]); for(int i = 1; i <= n; i++) scanf("%d", &b[i]); int len = sqrt(m+0.5); for(int i = 1; i <= m; i++){ scanf("%d %d", &x, &y); Q.pb((Data){x, y, i, x/len}); } sort(Q.begin(), Q.end()); int l = Q[0].l, r = Q[0].r; ans = 0; for(int i = l; i <= r; i++) Insert(i); ANS[Q[0].id] = ans; for(int i = 1; i < Q.size(); i++){ while(l > Q[i].l) Insert(--l); while(r < Q[i].r) Insert(++r); while(l < Q[i].l) Erase(l++); while(r > Q[i].r) Erase(r--); ANS[Q[i].id] = ans; } for(int i = 1; i <= m; i++) printf("%d ", ANS[i]); }
H 题
模拟题
注意给出的时间不一定是排好序的
用队列模拟进出站的情况
然后如果不够,就加一列火车
最后输出答案即可
(我这里直接用了平衡树(set),复杂度优化一个n,变成nlogn)
#include <iostream> #include <vector> #include <algorithm> #include <set> #define fi first #define se second #define mp make_pair #define pb push_back using namespace std; typedef pair<int, int> PII; struct Data{ PII t; int type; bool operator <(const Data &B) const{ return (t == B.t) ? type < B.type : t < B.t; } }; vector<Data> data; PII add(PII A, int B){ PII temp; temp.fi = (A.se+B)/60 + A.fi; temp.se = (A.se+B)%60; return temp; } int T, D, na, nb, x, y, ansa, ansb; char ch; set<PII> Sa, Sb; int main(){ cin>>T; while(T--){ ansa = ansb = 0; data.clear(); Sa.clear(); Sb.clear(); cin>>D; cin>>na>>nb; for(int i = 0; i < na; i++) { cin>>x; cin>>ch; cin>>y; data.pb((Data){mp(x, y), 1}); cin>>x; cin>>ch; cin>>y; Sb.insert(add(mp(x, y), D)); } for(int i = 0; i < nb; i++){ cin>>x; cin>>ch; cin>>y; data.pb((Data){mp(x, y), 2}); cin>>x; cin>>ch; cin>>y; Sa.insert(add(mp(x, y), D)); } sort(data.begin(), data.end()); for(int i = 0; i < data.size(); i++){ if(data[i].type == 1){ if(Sa.empty()){ Sa.insert(mp(0, 0)); ansa++; } if(*Sa.begin() > data[i].t){ Sa.insert(mp(0, 0)); ansa++; } Sa.erase(*Sa.begin()); } else{ if(Sb.empty()){ Sb.insert(mp(0, 0)); ansb++; } if(*Sb.begin() > data[i].t){ Sb.insert(mp(0, 0)); ansb++; } Sb.erase(*Sb.begin()); } } cout<<ansa<<" "<<ansb<<endl; } }
I 题
数据结构
维护一个二进制串的字典树即可
每次枚举两个数相加,然后在字典树中删除这2个数,再进行xor查找
查找之后,再把这两个数加回去
复杂度是O(n^2logv)
(顺便暴力n^3+黑科技或许也能过)
#include <iostream> #include <cstdio> #define fi first #define se second using namespace std; typedef long long LL; typedef pair<int, int> PII; const int maxn = 1010; PII node[maxn*100]; int G[maxn*100][2]; int tot, n; LL Pow[50], a[maxn]; void Insert(LL v){ //fi = 0 se = 1 int x = 0; for(int i = 0; i <= 31; i++){ LL k = (v&Pow[31-i]) > 0 ? 1 : 0; G[x][k]++; if(k){ if(node[x].se == 0) node[x].se = ++tot; x = node[x].se; } else{ if(node[x].fi == 0) node[x].fi = ++tot; x = node[x].fi; } } } void Erase(LL v){ int x = 0; for(int i = 0; i <= 31; i++){ LL k = (v&Pow[31-i]) > 0 ? 1 : 0; G[x][k]--; x = k ? node[x].se : node[x].fi; } } LL Find(LL v){ int x = 0; LL ans = 0; for(int i = 0; i <= 31; i++){ LL k = (v&Pow[31-i]) > 0 ? 0 : 1; if(G[x][k]){ ans += Pow[31-i]; x = k ? node[x].se : node[x].fi; } else { x = k ? node[x].fi : node[x].se; } } return ans; } int main(){ Pow[0] = 1; for(int i = 1; i <= 31; i++) Pow[i] = Pow[i-1]*2; cin>>n; for(int i = 0; i < n; i++) cin>>a[i], Insert(a[i]); LL ans = 0; for(int i = 0; i < n; i++){ for(int j = i+1; j < n; j++){ Erase(a[i]); Erase(a[j]); ans = max(ans, Find(a[i]+a[j])); Insert(a[i]); Insert(a[j]); } } cout<<ans<<endl; }
J 题
排列组合
orz 好像没什么好说的
注意一些特殊情况就行
#include <iostream> #include <cstdio> using namespace std; int a[3], H1[3][10000], H2[3][10000], n; int main(){ cin>>n; for(int i = 0; i < 3; i++) cin>>a[i]; for(int i = 0; i < 3; i++){ for(int j = -2; j <= 2; j++) H1[i][((a[i]+j)%n+n)%n] = 1; } for(int i = 0; i < 3; i++) cin>>a[i]; for(int i = 0; i < 3; i++){ for(int j = -2; j <= 2; j++) H2[i][((a[i]+j)%n+n)%n] = 1; } int ans1, ans2, ans3, t1, t2, t3; ans1 = ans2 = ans3 = 1; for(int i = 0; i < 3; i++){ t1 = t2 = t3 = 0; for(int j = 0; j < n; j++){ if(H1[i][j]) t1++; if(H2[i][j]) t2++; if(H1[i][j] && H2[i][j]) t3++; } ans1 *= t1; ans2 *= t2; ans3 *= t3; //cout<<ans1<<" "<<ans2<<" "<<ans3<<endl; } cout<<ans1+ans2-ans3<<endl; }