• Strassen优化矩阵乘法(复杂度O(n^lg7))


    按照算法导论写的

    还没有测试复杂度到底怎么样

    不过这个真的很卡内存,挖个坑,以后写空间优化

    还有Matthew Anderson, Siddharth Barman写了一个关于矩阵乘法的论文

    《The Coppersmith-Winograd Matrix Multiplication Algorithm》

    提出了矩阵乘法的O(n^2.37)算法,有时间再膜吧orz

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <iomanip>
    using namespace std;
    const int maxn = 30;
    struct Matrix
    {
        double v[maxn][maxn];
        int n, m;
        Matrix() { memset(v, 0, sizeof(v));}
        Matrix operator +(const Matrix& B)
        {
            Matrix C; C.n = n; C.m = m;
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    C.v[i][j] = v[i][j] + B.v[i][j];
            return C;
        }
        Matrix operator -(const Matrix& B)
        {
            Matrix C; C.n = n; C.m = m;
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    C.v[i][j] = v[i][j] - B.v[i][j];
            return C;
        }
        Matrix operator *(const Matrix &B)
        {
            Matrix C; C.n = n; C.m = B.m;
            for(int i = 0; i < n; i++)
                for(int j = 0; j < m; j++)
                {
                    if(v[i][j] == 0) continue; //矩阵常数优化
                    for(int k = 0; k < m; k++)
                        C.v[i][k] += v[i][j]*B.v[j][k];
                }
            return C;
        }
        void prepare()  //将矩阵转换成2^k的形式,便于分治
        {
            int _n = 1;
            while(_n < n) _n <<= 1;
            while(_n < m) _n <<= 1;
            for(int i = 0; i < n; i++)
                for(int j = m; j < _n; j++)
                    v[i][j] = 0;
            for(int i = n; i < _n; i++)
                for(int j = 0; j < _n; j++)
                    v[i][j] = 0;
            n = m = _n;
        }
        void read()
        {
            cin>>n>>m;
            for(int i = 0; i < n; i++)
                for(int j = 0; j < m; j++)
                    cin>>v[i][j];
        }
        Matrix get(int i1, int j1, int i2, int j2)
        {
            Matrix C; C.n = i2-i1+1; C.m = j2-j1+1;
            for(int i = i1-1; i < i2; i++)
                for(int j = j1-1; j < j2; j++)
                    C.v[i-i1+1][j-j1+1] = v[i][j];
            return C;
        }
        void give(Matrix &B, int i1, int j1, int i2, int j2)
        {
            for(int i = i1-1; i < i2; i++)
                for(int j = j1-1; j < j2; j++)
                    v[i][j] = B.v[i-i1+1][j-j1+1];
        }
        void print()
        {
            for(int i = 0; i < n; i++)
            {
                for(int j = 0; j < m; j++)
                    cout<<setw(6)<<v[i][j];
                cout<<endl;
            }
    
        }
    }A, B;
    
    Matrix Strassen(Matrix &X, Matrix &Y)  //分治+利用多次矩阵相加代替矩阵相乘优化,复杂度O(n^2.81)
    {
        if(X.n == 1) return X*Y;
        int n = X.n;
        Matrix A[2][2], B[2][2], S[10], P[7];
        A[0][0] = X.get(1, 1, n/2, n/2);   A[0][1] = X.get(1, n/2+1, n/2, n);
        A[1][0] = X.get(n/2+1, 1, n, n/2); A[1][1] = X.get(n/2+1, n/2+1, n, n);
        B[0][0] = Y.get(1, 1, n/2, n/2);   B[0][1] = Y.get(1, n/2+1, n/2, n);
        B[1][0] = Y.get(n/2+1, 1, n, n/2); B[1][1] = Y.get(n/2+1, n/2+1, n, n);
        //for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) A[i][j].print(); cout<<endl; }
        //for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) B[i][j].print(); cout<<endl; }
        S[0] = B[0][1] - B[1][1]; S[1] = A[0][0] + A[0][1];
        S[2] = A[1][0] + A[1][1]; S[3] = B[1][0] - B[0][0]; S[4] = A[0][0] + A[1][1];
        S[5] = B[0][0] + B[1][1]; S[6] = A[0][1] - A[1][1];
        S[7] = B[1][0] + B[1][1]; S[8] = A[0][0] - A[1][0]; S[9] = B[0][0] + B[0][1];
        P[0] = Strassen(A[0][0], S[0]); P[1] = Strassen(S[1], B[1][1]);
        P[2] = Strassen(S[2], B[0][0]); P[3] = Strassen(A[1][1], S[3]);
        P[4] = Strassen(S[4], S[5]);    P[5] = Strassen(S[6], S[7]);    P[6] = Strassen(S[8], S[9]);
        //for(int i = 0; i < 7; i++) P[i].print(); cout<<endl;
        B[0][0] = P[4] + P[3] - P[1] + P[5];    B[0][1] = P[0] + P[1];
        B[1][0] = P[2] + P[3];                  B[1][1] = P[4] + P[0] - P[2] - P[6];
        //for(int i = 0; i < 2; i++) { for(int j = 0; j < 2; j++) B[i][j].print();  }
        X.give(B[0][0], 1, 1, n/2, n/2);    X.give(B[0][1], 1, n/2+1, n/2, n);
        X.give(B[1][0], n/2+1, 1, n, n/2);  X.give(B[1][1], n/2+1, n/2+1, n, n);
        return X;
    }
    
    
    
    int main()
    {
        Matrix C;
        A.read(); B.read();
        int n = A.n, m = B.m;
        A.prepare(); B.prepare();
        C = Strassen(A, B); C.n = n; C.m = m; C.print();
    }
  • 相关阅读:
    删DS.Store
    switch 多重选择
    PrintWrite写入文件
    读取文件
    notepad++如何把文件保存为java文件
    让notepad++成为轻量级JAVA的IDE
    Jenkins构建Python项目提示:'python' 不是内部或外部命令,也不是可运行的程序
    相关服务账号
    Jenkins安装与启动
    jmeter安装
  • 原文地址:https://www.cnblogs.com/Saurus/p/6127478.html
Copyright © 2020-2023  润新知