• Luogu 1613 跑路(最短路径,倍增)


    Luogu 1613 跑路(最短路径,倍增)

    Description

    小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

    Input

    第一行两个整数n,m,表示点的个数和边的个数。

    接下来m行每行两个数字u,v,表示一条u到v的边。

    Output

    一行一个数字,表示到公司的最少秒数。

    Sample Input

    4 4
    1 1
    1 2
    2 3
    3 4

    Sample Output

    Http

    Luogu:https://www.luogu.org/problem/show?pid=1613

    Source

    最短路径,倍增

    解决思路

    这道题目是最短路径与倍增算法的综合运用。
    我们知道Floyed求最短路径的原理是用一个点k来修改i到j的最短距离。在这道题中,我们要灵活地用到这个方法。
    因为本题中小A每秒可以跑2^k(k为任意数),所以直接求最短路径是不对的。我们可以与处理出小A1秒钟可以到达的边,这个用Floyed实现,再用一个Floyde或spfa求出1到n的最短路径就可以了。

    那么关键就是如何进行预处理呢?
    我们可以用一个数组F来记录,F[i][u][v]表示u到v能否通过2^i到达,这也就是1秒。在读入的时候我们就可以得出F[0][u][v]的值,然后从1~32(因为maxlongint就是2^31)枚举i,同时枚举u和v,借助Floyed用第三个点来修改的这种思想,我们再枚举一个点k,若F[i-1][u][k]和F[i-1][k][v]同时为真,则说明F[i][u][v]为真(因为2^(i-1)+2^(i-1)=2*i)。这样我们就可以与处理出所有1秒可以到的边。

    然后再跑一边最短路就可以了。

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    const int maxN=60;
    const int inf=2147483647;
    
    int n,m;
    int G[maxN][maxN];
    bool F[40][maxN][maxN];
    
    int main()
    {
        memset(G,120,sizeof(G));
        memset(F,0,sizeof(F));
        cin>>n>>m;
        for (int i=1;i<=m;i++)
        {
            int u,v;
            cin>>u>>v;
            G[u][v]=1;
            F[0][u][v]=1;//读入的同时给F赋初值
        }
        for (int i=1;i<=36;i++)//计算F,预处理
            for (int u=1;u<=n;u++)
                for (int v=1;v<=n;v++)
                    for (int k=1;k<=n;k++)
                            if ((F[i-1][u][k]==1)&&(F[i-1][k][v]==1))
                            {
                                F[i][u][v]=1;
                                G[u][v]=1;
                            }
        for (int i=1;i<=n;i++)//再用最短路求出1~n的最短距离
            for (int j=1;j<=n;j++)
                    for (int k=1;k<=n;k++)
                        if (G[i][k]+G[k][j]>=0)
                            G[i][j]=min(G[i][j],G[i][k]+G[k][j]);
        cout<<G[1][n]<<endl;
        return 0;
    }
    
  • 相关阅读:
    Java容器学习之ArrayList
    Java容器学习之List
    个人感悟
    python_批量修改密码综评
    修改的一段递归文件代码
    showtimu
    20190321xlVBA_明细信息表汇总成数据表
    20190320xlVBA_考场座位设置
    RG
    wdVBA_替换删除选择题括号中的选项
  • 原文地址:https://www.cnblogs.com/SYCstudio/p/7210732.html
Copyright © 2020-2023  润新知