POJ 2152 fire / SCU 2977 fire(树型动态规划)
Description
Country Z has N cities, which are numbered from 1 to N. Cities are connected by highways, and there is exact one path between two different cities. Recently country Z often caught fire, so the government decided to build some firehouses in some cities. Build a firehouse in city K cost W(K). W for different cities may be different. If there is not firehouse in city K, the distance between it and the nearest city which has a firehouse, can’t be more than D(K). D for different cities also may be different. To save money, the government wants you to calculate the minimum cost to build firehouses.
Input
The first line of input contains a single integer T representing the number of test cases. The following T blocks each represents a test case.
The first line of each block contains an integer N (1 < N <= 1000). The second line contains N numbers separated by one or more blanks. The I-th number means W(I) (0 < W(I) <= 10000). The third line contains N numbers separated by one or more blanks. The I-th number means D(I) (0 <= D(I) <= 10000). The following N-1 lines each contains three integers u, v, L (1 <= u, v <= N,0 < L <= 1000), which means there is a highway between city u and v of length L.
Output
For each test case output the minimum cost on a single line.
Sample Input
5
5
1 1 1 1 1
1 1 1 1 1
1 2 1
2 3 1
3 4 1
4 5 1
5
1 1 1 1 1
2 1 1 1 2
1 2 1
2 3 1
3 4 1
4 5 1
5
1 1 3 1 1
2 1 1 1 2
1 2 1
2 3 1
3 4 1
4 5 1
4
2 1 1 1
3 4 3 2
1 2 3
1 3 3
1 4 2
4
4 1 1 1
3 4 3 2
1 2 3
1 3 3
1 4 2
Sample Output
2
1
2
2
3
Http
POJ:https://vjudge.net/problem/POJ-2152
SCU:https://vjudge.net/problem/SCU-2977
Source
树型动态规划
题目大意
n个城市由n-1条带权的路相连接,现在要选择一些城市建造消防站,每个城市建造消防站都有不同的花费,并且要满足没有建消防站的城市u在D[u]范围内有建了消防站的城市(每个城市的D[u]也有可能不一样),现在求花费最小的方案。
解决思路
看到这个题目的第一眼想到的是最小支配集,但要注意题中在D[u]范围内这个条件,我们不能用简单的最小支配集算法来解决。
在开始讲述前,我们先规定几个变量及其意义。
F[u][build]:这是我们动态规划的数组,其意义是选择在build处修建消防站来覆盖u的最小花费(并保证此时u的所有子树都已经被覆盖)
Best[u]:表示覆盖u的所有方案中花费最小的一个
Dist[u][v]:u和v之间的距离
首先我们来看稍微好理解一点的Best[u],根据定义,对于所有的满足Dist[u][build]< D[u]的我们可以得到Best[u]=min(Best[u],Dist[u][build])。这是可以直接根据定义推导出来的。
那么接下来就是求F[u][build]啦。
当然首先是要递归地求出u的子节点(下文中均用v来表示)的信息。
接下来就是最重要的部分了,有点难理解,仔细阅读!
然后我们枚举图中的每一个点build,表示在build建消防站来覆盖点u。若Dist[u][build]>D[u],说明在build建立消防站不能覆盖点u,那么我们就把F[u][build]置为无穷大。若Dist[u][build]< D[u],说明可以在build建立消防站来覆盖点u,我们就依次枚举u的子节点v,让F[u][build]每次累加min(Best[v],F[v][build]-W[build]),最后再让F[u][build]加上建站在build的费用W[build]。下面来解释一下这个转移是如何进行的,又是基于什么原理。
因为在build建立消防站后可能不止覆盖到u,还有可能同时可以覆盖u的子节点v,那么此时v就有两种选择,一是被build覆盖(即上面的F[v][build]-W[build],你问我为什么要减去W[build],因为F[v][build]中是统计了建站在build时的费用的,为了防止重复计算建立消防站在build的费用,所以这里要减去);二是被其他点覆盖(即上面的Best[v])。
另外如果build无法覆盖v怎么办(即Dist[v][build]>D[v]),上面的方程好像没有考虑到这种情况啊?
不用担心,若build无法覆盖v,此时的F[v][build]是置为无穷大的,取min后不会被统计到F[u][build]中。
最后,为了节省空间,在笔者的代码中,Dist转换成了一维的,Dist[v]表示当前dfs中的点u到v的距离。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxN=1001;
const int inf=2147483647;
class Edge
{
public:
int v,w;
};
int n;
int W[maxN];
int D[maxN];
vector<Edge> E[maxN];
int Dist[maxN];
int F[maxN][maxN];
int Best[maxN];
queue<int> Q;
int read();
void dfs(int u,int father);
int main()
{
int TT;
TT=read();
for (int ti=1;ti<=TT;ti++)
{
n=read();
for (int i=1;i<=n;i++)//注意多组数据记得清空
E[i].clear();
for (int i=1;i<=n;i++)
W[i]=read();
for (int i=1;i<=n;i++)
D[i]=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read(),w=read();
E[x].push_back((Edge){y,w});
E[y].push_back((Edge){x,w});
}
//cout<<"Read_end"<<endl;
dfs(1,1);
cout<<Best[1]<<endl;
}
return 0;
}
int read()
{
int x=0;
int k=1;
char ch=getchar();
while (((ch<'0')||(ch>'9'))&&(ch!='-'))
ch=getchar();
if (ch=='-')
{
k=-1;
ch=getchar();
}
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x*k;
}
void dfs(int u,int father)
{
for (int i=0;i<E[u].size();i++)//首先把所有子节点的值算出来
{
int v=E[u][i].v;
if (v==father)
continue;
dfs(v,u);
}
memset(Dist,-1,sizeof(Dist));//临时用bfs求出u到所有点的距离
while (!Q.empty())
Q.pop();
Dist[u]=0;
Q.push(u);
do
{
int uu=Q.front();
Q.pop();
for (int i=0;i<E[uu].size();i++)
{
int v=E[uu][i].v;
if (Dist[v]==-1)
{
Dist[v]=Dist[uu]+E[uu][i].w;
Q.push(v);
}
}
}
while (!Q.empty());
Best[u]=inf;//因为要求最小,所以初值为无穷大
for (int build=1;build<=n;build++)
{
if (Dist[build]<=D[u])
{
F[u][build]=W[build];
for (int i=0;i<E[u].size();i++)
{
int v=E[u][i].v;
if (v==father)
continue;
F[u][build]+=min(Best[v],F[v][build]-W[build]);//统计u的子节点v
}
Best[u]=min(Best[u],F[u][build]);//用刚计算出来的F[u][build]更新Best[u]
}
else//若build无法覆盖u,则置为无穷大
F[u][build]=inf;
}
return;
}