强连通:在有向图中,如果Vx能到达Vy,且Vy也能到达Vx,说明它们两个点强连通。
强连通分量:在有向图中,存在一个极大子图,该子图中任意两点都是强连通。
#include <iostream> #include <vector> #include <cstdio> #include <cstring> #include <queue> #include <map> using namespace std; #define ll long long #define pb push_back #define fi first #define se second const int N = 1e4 + 10; int dfn[N]; //时间戳 int low[N]; //能到达最早点 int s[N]; //栈 int ins[N]; //是否在栈内 int scc_no[N];//属于哪个scc int scc_cnt[N]; //该scc有几个点 vector<int > scc[N];//缩点 vector<int > E[N]; //边 vector<int > new_E[N];//缩点后的图 int SCC; //第几个scc int tim;//dfs序号 int top;//栈顶 int n, m; //点数 边数 //时间复杂度 O(m) void init(int n){ for(int i = 1; i <= n; ++i){ dfn[i] = low[i] = ins[i] = 0; scc_cnt[i] = 0; scc_no[i] = 0; scc[i].clear(); E[i].clear(); new_E[i].clear(); } SCC = tim = top = 0; } void tarjan(int now){ dfn[now] = low[now] = ++tim; ins[now] = 1; s[top++] = now; for(auto to : E[now]){ if(!dfn[to]){ tarjan(to); low[now] = min(low[now], low[to]); }else if(ins[to]){ //侧边,形成环 low[now] = min(low[now], dfn[to]); } } if(dfn[now] == low[now]){ int sum = 0; //该scc的点数 ++SCC;//第几个scc int tmp;//暂存点 do{ tmp = s[--top];//取点 ins[tmp] = 0;//出栈 ++sum;//点数++ scc_no[tmp] = SCC;//属于哪个scc scc[SCC].pb(tmp);//放入这个连通图,缩点 }while(tmp != now); scc_cnt[SCC] = sum;//该scc的点数 } } void show_info(){ //每个点属于哪个scc cout << endl << "-------------------" << endl; for(int i = 1; i <= n; ++i){ printf("id = %d scc_no = %d ", i, scc_no[i]); } //每个scc包含几个点 cout << endl << "-------------------" << endl; for(int i = 1; i <= SCC; ++i){ printf("SCC = %d cnt = %d ", i, scc_cnt[i]); //这个scc中点的信息 printf("have point : "); for(auto poi : scc[i]){ printf("(%d) ", poi); } cout << endl << endl; } cout << endl << "-------------------" << endl; //新图的边 for(int i = 1; i <= SCC; ++i){ printf("id = %d: to : ", i); for(auto v : new_E[i]){ printf("(%d) ", v); }printf(" "); } cout << endl << "-------------------" << endl; } void solve(){ while(~scanf("%d%d", &n, &m)){ //scanf("%d%d", &n, &m); //初始化每组数据 init(n); //读边 for(int i = 1; i <= m; ++i){ int u, v; scanf("%d%d", &u, &v); E[u].pb(v); } //可能不是一个连通图 for(int now = 1; now <= n; ++now){ if(!dfn[now]){ tarjan(now); } } //新图建边 for(int now = 1; now <= n; ++now){ for(auto to : E[now]){ if(scc_no[now] != scc_no[to]){ new_E[scc_no[now]].pb(scc_no[to]); } } } //tarjan()过后的信息展示 show_info(); } } int main(){ solve(); //cout << "not error" << endl; return 0; }