• 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用


    1.用python实现K均值算法
    1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;

    import numpy as np
    x=np.random.randint(1,100,[20,1])  
    y=np.zeros(20)
    k=3

    def initcenter(x,k):
        return x[:k]
    kc=initcenter(x,k)
    kc

    运行结果:

    array([[68],
           [69],
           [51]])

    2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;

    def nearest(kc,i):
        d=(abs(kc-i))
        w=np.where(d==np.min(d))
        return w[0][0]

    kc=initcenter(x,k)
    nearest(kc,93)

    for i in range(x.shape[0]):
        y[i]=nearest(kc,x[i])
    print(y)

    def nearest(kc,i):
        d=(abs(kc-i))
        w=np.where(d==np.min(d))
        return w[0][0]
    def initcenter(x,k):
        return x[:k]

    def nearest(kc,i):
        d=(abs(kc - i))
        w=np.where(d==np.min(d))
        return w[0][0]

    def xclassify(x,y,kc):
        for i in range(x.shape[0]):
            y[i]=nearest(kc,x[i])
        return y
    kc=initcenter(x,k)
    y=xclassify(x,y,kc)
    print(kc,y)

    m=np.where(y==0)
    print(m)
    np.mean(x[m])

    kc[0]=66
    flag=True

    运行结果:

    1
    [0. 1. 2. 2. 2. 1. 2. 2. 1. 2. 1. 2. 2. 1. 0. 2. 1. 2. 0. 2.]
    [[68]
     [69]
     [51]] [0. 1. 2. 2. 2. 1. 2. 2. 1. 2. 1. 2. 2. 1. 0. 2. 1. 2. 0. 2.]
    (array([ 0, 14, 18], dtype=int64),)
    
    65.0

    3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;
     
    def kcmean (x,y,kc,k):  #计算各聚类新均值
        l=list(kc)
        flag=False
        for c in range(k):
            m=np.where(y==c)
            n=np.mean(x[m])
            if l[c] !=n:
                    l[c]=n
                    flag=True  #聚类中心发生变化
        return (np.array(l),flag)             
    def xclassify(x,y,kc):
        for i in range (x.shape[0]):  #对数组的每个值分类
            y[i]=nearest(kc,x[i])
        return y
    flag = True
    print(x,y,kc,flag)
    while flag:
        y = xclassify(x,y,kc)
        kc,flag = kcmean(x,y,kc,k)
    print(y,kc,type(kc))
    ​运行结果:

    [[66]
     [69]
     [51]
     [12]
     [45]
     [92]
     [ 6]
     [ 4]
     [87]
     [ 2]
     [95]
     [58]
     [35]
     [89]
     [62]
     [44]
     [83]
     [10]
     [65]
     [31]] [0. 1. 2. 2. 2. 1. 2. 2. 1. 2. 1. 2. 2. 1. 0. 2. 1. 2. 0. 2.] [[66]
     [69]
     [51]] True
    [0. 0. 0. 2. 0. 1. 2. 2. 1. 2. 1. 0. 2. 1. 0. 0. 1. 2. 0. 2.] [57.5        89.2        14.28571429] <class 'numpy.ndarray'>
    
    4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)
    import matplotlib.pyplot as plt
    plt.scatter(x,x,s=50,cmap="rainbow");
    plt.show()
    运行结果:

     



    2. 鸢尾花花瓣长度数据做聚类并用散点图显示
    import numpy as np
    from sklearn.datasets import load_iris
    
    iris = load_iris()
    x = iris.data[:, 1]
    y = np.zeros(150)
    
    def initcent(x, k):  # 初始聚类中心数组
        return x[0:k].reshape(k)
    
    def nearest(kc, i):  # 数组中的值,与聚类中心最小距离所在类别的索引号
        d = (abs(kc - i))
        w = np.where(d == np.min(d))
        return w[0][0]
    
    def kcmean(x, y, kc, k):  # 计算各聚类新均值
        l = list(kc)
        flag = False
        for c in range(k):
            m = np.where(y == c)
            n = np.mean(x[m])
            if l[c] != n:
                l[c] = n
                flag = True  # 聚类中心发生变化
        return (np.array(l), flag)
    
    def xclassify(x, y, kc):
        for i in range(x.shape[0]):  # 对数组的每个值分类
            y[i] = nearest(kc, x[i])
        return y
    k = 3
    kc = initcent(x, k)
    flag = True
    print(x, y, kc, flag)
    while flag:
        y = xclassify(x, y, kc)
        kc, flag = kcmean(x, y, kc, k)
    print(y, kc, type(kc))

    import matplotlib.pyplot as plt
    plt.scatter(x,x,c=y,s=50,cmap='rainbow',marker='p',alpha=1.5);
    plt.show()
    运行结果:
    [3.5 3.  3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3.  3.  4.  4.4 3.9 3.5
     3.8 3.8 3.4 3.7 3.6 3.3 3.4 3.  3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2 3.1 3.2
     3.5 3.1 3.  3.4 3.5 2.3 3.2 3.5 3.8 3.  3.8 3.2 3.7 3.3 3.2 3.2 3.1 2.3
     2.8 2.8 3.3 2.4 2.9 2.7 2.  3.  2.2 2.9 2.9 3.1 3.  2.7 2.2 2.5 3.2 2.8
     2.5 2.8 2.9 3.  2.8 3.  2.9 2.6 2.4 2.4 2.7 2.7 3.  3.4 3.1 2.3 3.  2.5
     2.6 3.  2.6 2.3 2.7 3.  2.9 2.9 2.5 2.8 3.3 2.7 3.  2.9 3.  3.  2.5 2.9
     2.5 3.6 3.2 2.7 3.  2.5 2.8 3.2 3.  3.8 2.6 2.2 3.2 2.8 2.8 2.7 3.3 3.2
     2.8 3.  2.8 3.  2.8 3.8 2.8 2.8 2.6 3.  3.4 3.1 3.  3.1 3.1 3.1 2.7 3.2
     3.3 3.  2.5 3.  3.4 3. ] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0.] [3.5 3.  3.2] True
    [2. 2. 2. 2. 0. 0. 2. 2. 1. 2. 0. 2. 2. 2. 0. 0. 0. 2. 0. 0. 2. 0. 0. 2.
     2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 2. 2. 2. 1. 2. 2. 0. 2. 0. 2.
     0. 2. 2. 2. 2. 1. 1. 1. 2. 1. 1. 1. 1. 2. 1. 1. 1. 2. 2. 1. 1. 1. 2. 1.
     1. 1. 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 2. 2. 2. 1. 2. 1. 1. 2. 1. 1. 1. 2.
     1. 1. 1. 1. 2. 1. 2. 1. 2. 2. 1. 1. 1. 0. 2. 1. 2. 1. 1. 2. 2. 0. 1. 1.
     2. 1. 1. 1. 2. 2. 1. 2. 1. 2. 1. 0. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 1. 2.
     2. 2. 1. 2. 2. 2.] [3.84444444 2.64035088 3.17866667] <class 'numpy.ndarray'>
    
    
     
    3. 用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示.

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris

    iris=load_iris()
    X=iris.data
    print(X)

    from sklearn.cluster import KMeans

    est=KMeans(n_clusters=3)
    est.fit(X)
    kc=est.cluster_centers_
    y_kmeans=est.predict(X)

    print(y_kmeans,kc)
    print(kc.shape,y_kmeans.shape,X.shape)
    plt.scatter(X[:,0],X[:,1],c=y_kmeans,s=100,cmap='rainbow');
    plt.show()

    运行结果:
    [[5.1 3.5 1.4 0.2]
     [4.9 3.  1.4 0.2]
     [4.7 3.2 1.3 0.2]
     [4.6 3.1 1.5 0.2]
     [5.  3.6 1.4 0.2]
     [5.4 3.9 1.7 0.4]
     [4.6 3.4 1.4 0.3]
     [5.  3.4 1.5 0.2]
     [4.4 2.9 1.4 0.2]
     [4.9 3.1 1.5 0.1]
     [5.4 3.7 1.5 0.2]
     [4.8 3.4 1.6 0.2]
     [4.8 3.  1.4 0.1]
     [4.3 3.  1.1 0.1]
     [5.8 4.  1.2 0.2]
     [5.7 4.4 1.5 0.4]
     [5.4 3.9 1.3 0.4]
     [5.1 3.5 1.4 0.3]
     [5.7 3.8 1.7 0.3]
     [5.1 3.8 1.5 0.3]
     [5.4 3.4 1.7 0.2]
     [5.1 3.7 1.5 0.4]
     [4.6 3.6 1.  0.2]
     [5.1 3.3 1.7 0.5]
     [4.8 3.4 1.9 0.2]
     [5.  3.  1.6 0.2]
     [5.  3.4 1.6 0.4]
     [5.2 3.5 1.5 0.2]
     [5.2 3.4 1.4 0.2]
     [4.7 3.2 1.6 0.2]
     [4.8 3.1 1.6 0.2]
     [5.4 3.4 1.5 0.4]
     [5.2 4.1 1.5 0.1]
     [5.5 4.2 1.4 0.2]
     [4.9 3.1 1.5 0.1]
     [5.  3.2 1.2 0.2]
     [5.5 3.5 1.3 0.2]
     [4.9 3.1 1.5 0.1]
     [4.4 3.  1.3 0.2]
     [5.1 3.4 1.5 0.2]
     [5.  3.5 1.3 0.3]
     [4.5 2.3 1.3 0.3]
     [4.4 3.2 1.3 0.2]
     [5.  3.5 1.6 0.6]
     [5.1 3.8 1.9 0.4]
     [4.8 3.  1.4 0.3]
     [5.1 3.8 1.6 0.2]
     [4.6 3.2 1.4 0.2]
     [5.3 3.7 1.5 0.2]
     [5.  3.3 1.4 0.2]
     [7.  3.2 4.7 1.4]
     [6.4 3.2 4.5 1.5]
     [6.9 3.1 4.9 1.5]
     [5.5 2.3 4.  1.3]
     [6.5 2.8 4.6 1.5]
     [5.7 2.8 4.5 1.3]
     [6.3 3.3 4.7 1.6]
     [4.9 2.4 3.3 1. ]
     [6.6 2.9 4.6 1.3]
     [5.2 2.7 3.9 1.4]
     [5.  2.  3.5 1. ]
     [5.9 3.  4.2 1.5]
     [6.  2.2 4.  1. ]
     [6.1 2.9 4.7 1.4]
     [5.6 2.9 3.6 1.3]
     [6.7 3.1 4.4 1.4]
     [5.6 3.  4.5 1.5]
     [5.8 2.7 4.1 1. ]
     [6.2 2.2 4.5 1.5]
     [5.6 2.5 3.9 1.1]
     [5.9 3.2 4.8 1.8]
     [6.1 2.8 4.  1.3]
     [6.3 2.5 4.9 1.5]
     [6.1 2.8 4.7 1.2]
     [6.4 2.9 4.3 1.3]
     [6.6 3.  4.4 1.4]
     [6.8 2.8 4.8 1.4]
     [6.7 3.  5.  1.7]
     [6.  2.9 4.5 1.5]
     [5.7 2.6 3.5 1. ]
     [5.5 2.4 3.8 1.1]
     [5.5 2.4 3.7 1. ]
     [5.8 2.7 3.9 1.2]
     [6.  2.7 5.1 1.6]
     [5.4 3.  4.5 1.5]
     [6.  3.4 4.5 1.6]
     [6.7 3.1 4.7 1.5]
     [6.3 2.3 4.4 1.3]
     [5.6 3.  4.1 1.3]
     [5.5 2.5 4.  1.3]
     [5.5 2.6 4.4 1.2]
     [6.1 3.  4.6 1.4]
     [5.8 2.6 4.  1.2]
     [5.  2.3 3.3 1. ]
     [5.6 2.7 4.2 1.3]
     [5.7 3.  4.2 1.2]
     [5.7 2.9 4.2 1.3]
     [6.2 2.9 4.3 1.3]
     [5.1 2.5 3.  1.1]
     [5.7 2.8 4.1 1.3]
     [6.3 3.3 6.  2.5]
     [5.8 2.7 5.1 1.9]
     [7.1 3.  5.9 2.1]
     [6.3 2.9 5.6 1.8]
     [6.5 3.  5.8 2.2]
     [7.6 3.  6.6 2.1]
     [4.9 2.5 4.5 1.7]
     [7.3 2.9 6.3 1.8]
     [6.7 2.5 5.8 1.8]
     [7.2 3.6 6.1 2.5]
     [6.5 3.2 5.1 2. ]
     [6.4 2.7 5.3 1.9]
     [6.8 3.  5.5 2.1]
     [5.7 2.5 5.  2. ]
     [5.8 2.8 5.1 2.4]
     [6.4 3.2 5.3 2.3]
     [6.5 3.  5.5 1.8]
     [7.7 3.8 6.7 2.2]
     [7.7 2.6 6.9 2.3]
     [6.  2.2 5.  1.5]
     [6.9 3.2 5.7 2.3]
     [5.6 2.8 4.9 2. ]
     [7.7 2.8 6.7 2. ]
     [6.3 2.7 4.9 1.8]
     [6.7 3.3 5.7 2.1]
     [7.2 3.2 6.  1.8]
     [6.2 2.8 4.8 1.8]
     [6.1 3.  4.9 1.8]
     [6.4 2.8 5.6 2.1]
     [7.2 3.  5.8 1.6]
     [7.4 2.8 6.1 1.9]
     [7.9 3.8 6.4 2. ]
     [6.4 2.8 5.6 2.2]
     [6.3 2.8 5.1 1.5]
     [6.1 2.6 5.6 1.4]
     [7.7 3.  6.1 2.3]
     [6.3 3.4 5.6 2.4]
     [6.4 3.1 5.5 1.8]
     [6.  3.  4.8 1.8]
     [6.9 3.1 5.4 2.1]
     [6.7 3.1 5.6 2.4]
     [6.9 3.1 5.1 2.3]
     [5.8 2.7 5.1 1.9]
     [6.8 3.2 5.9 2.3]
     [6.7 3.3 5.7 2.5]
     [6.7 3.  5.2 2.3]
     [6.3 2.5 5.  1.9]
     [6.5 3.  5.2 2. ]
     [6.2 3.4 5.4 2.3]
     [5.9 3.  5.1 1.8]]
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
     1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2
     2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2
     2 1] [[5.006      3.418      1.464      0.244     ]
     [5.9016129  2.7483871  4.39354839 1.43387097]
     [6.85       3.07368421 5.74210526 2.07105263]]
    (3, 4) (150,) (150, 4)

    4. 鸢尾花完整数据做聚类并用散点图显示

    from sklearn.cluster import KMeans
    import numpy as np
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    data = load_iris()
    iris = data.data
    petal_len = iris
    print(petal_len)
    k_means = KMeans(n_clusters=3) #三个聚类中心
    result = k_means.fit(petal_len) #Kmeans自动分类
    kc = result.cluster_centers_ #自动分类后的聚类中心
    y_means = k_means.predict(petal_len) #预测Y值
    plt.scatter(petal_len[:,0],petal_len[:,2],c=y_means, marker='*', label='see')
    plt.show()

    运行结果:
     
    from sklearn.cluster import KMeans
    import numpy as np
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    data = load_iris()
    iris = data.data
    petal_len = iris
    print(petal_len)
    k_means = KMeans(n_clusters=3) #三个聚类中心
    result = k_means.fit(petal_len) #Kmeans自动分类
    kc = result.cluster_centers_ #自动分类后的聚类中心
    y_means = k_means.predict(petal_len) #预测Y值
    plt.scatter(petal_len[:,0],petal_len[:,2],c=y_means, marker='*', label='see')
    plt.show()
    [[5.1 3.5 1.4 0.2]
     [4.9 3.  1.4 0.2]
     [4.7 3.2 1.3 0.2]
     [4.6 3.1 1.5 0.2]
     [5.  3.6 1.4 0.2]
     [5.4 3.9 1.7 0.4]
     [4.6 3.4 1.4 0.3]
     [5.  3.4 1.5 0.2]
     [4.4 2.9 1.4 0.2]
     [4.9 3.1 1.5 0.1]
     [5.4 3.7 1.5 0.2]
     [4.8 3.4 1.6 0.2]
     [4.8 3.  1.4 0.1]
     [4.3 3.  1.1 0.1]
     [5.8 4.  1.2 0.2]
     [5.7 4.4 1.5 0.4]
     [5.4 3.9 1.3 0.4]
     [5.1 3.5 1.4 0.3]
     [5.7 3.8 1.7 0.3]
     [5.1 3.8 1.5 0.3]
     [5.4 3.4 1.7 0.2]
     [5.1 3.7 1.5 0.4]
     [4.6 3.6 1.  0.2]
     [5.1 3.3 1.7 0.5]
     [4.8 3.4 1.9 0.2]
     [5.  3.  1.6 0.2]
     [5.  3.4 1.6 0.4]
     [5.2 3.5 1.5 0.2]
     [5.2 3.4 1.4 0.2]
     [4.7 3.2 1.6 0.2]
     [4.8 3.1 1.6 0.2]
     [5.4 3.4 1.5 0.4]
     [5.2 4.1 1.5 0.1]
     [5.5 4.2 1.4 0.2]
     [4.9 3.1 1.5 0.1]
     [5.  3.2 1.2 0.2]
     [5.5 3.5 1.3 0.2]
     [4.9 3.1 1.5 0.1]
     [4.4 3.  1.3 0.2]
     [5.1 3.4 1.5 0.2]
     [5.  3.5 1.3 0.3]
     [4.5 2.3 1.3 0.3]
     [4.4 3.2 1.3 0.2]
     [5.  3.5 1.6 0.6]
     [5.1 3.8 1.9 0.4]
     [4.8 3.  1.4 0.3]
     [5.1 3.8 1.6 0.2]
     [4.6 3.2 1.4 0.2]
     [5.3 3.7 1.5 0.2]
     [5.  3.3 1.4 0.2]
     [7.  3.2 4.7 1.4]
     [6.4 3.2 4.5 1.5]
     [6.9 3.1 4.9 1.5]
     [5.5 2.3 4.  1.3]
     [6.5 2.8 4.6 1.5]
     [5.7 2.8 4.5 1.3]
     [6.3 3.3 4.7 1.6]
     [4.9 2.4 3.3 1. ]
     [6.6 2.9 4.6 1.3]
     [5.2 2.7 3.9 1.4]
     [5.  2.  3.5 1. ]
     [5.9 3.  4.2 1.5]
     [6.  2.2 4.  1. ]
     [6.1 2.9 4.7 1.4]
     [5.6 2.9 3.6 1.3]
     [6.7 3.1 4.4 1.4]
     [5.6 3.  4.5 1.5]
     [5.8 2.7 4.1 1. ]
     [6.2 2.2 4.5 1.5]
     [5.6 2.5 3.9 1.1]
     [5.9 3.2 4.8 1.8]
     [6.1 2.8 4.  1.3]
     [6.3 2.5 4.9 1.5]
     [6.1 2.8 4.7 1.2]
     [6.4 2.9 4.3 1.3]
     [6.6 3.  4.4 1.4]
     [6.8 2.8 4.8 1.4]
     [6.7 3.  5.  1.7]
     [6.  2.9 4.5 1.5]
     [5.7 2.6 3.5 1. ]
     [5.5 2.4 3.8 1.1]
     [5.5 2.4 3.7 1. ]
     [5.8 2.7 3.9 1.2]
     [6.  2.7 5.1 1.6]
     [5.4 3.  4.5 1.5]
     [6.  3.4 4.5 1.6]
     [6.7 3.1 4.7 1.5]
     [6.3 2.3 4.4 1.3]
     [5.6 3.  4.1 1.3]
     [5.5 2.5 4.  1.3]
     [5.5 2.6 4.4 1.2]
     [6.1 3.  4.6 1.4]
     [5.8 2.6 4.  1.2]
     [5.  2.3 3.3 1. ]
     [5.6 2.7 4.2 1.3]
     [5.7 3.  4.2 1.2]
     [5.7 2.9 4.2 1.3]
     [6.2 2.9 4.3 1.3]
     [5.1 2.5 3.  1.1]
     [5.7 2.8 4.1 1.3]
     [6.3 3.3 6.  2.5]
     [5.8 2.7 5.1 1.9]
     [7.1 3.  5.9 2.1]
     [6.3 2.9 5.6 1.8]
     [6.5 3.  5.8 2.2]
     [7.6 3.  6.6 2.1]
     [4.9 2.5 4.5 1.7]
     [7.3 2.9 6.3 1.8]
     [6.7 2.5 5.8 1.8]
     [7.2 3.6 6.1 2.5]
     [6.5 3.2 5.1 2. ]
     [6.4 2.7 5.3 1.9]
     [6.8 3.  5.5 2.1]
     [5.7 2.5 5.  2. ]
     [5.8 2.8 5.1 2.4]
     [6.4 3.2 5.3 2.3]
     [6.5 3.  5.5 1.8]
     [7.7 3.8 6.7 2.2]
     [7.7 2.6 6.9 2.3]
     [6.  2.2 5.  1.5]
     [6.9 3.2 5.7 2.3]
     [5.6 2.8 4.9 2. ]
     [7.7 2.8 6.7 2. ]
     [6.3 2.7 4.9 1.8]
     [6.7 3.3 5.7 2.1]
     [7.2 3.2 6.  1.8]
     [6.2 2.8 4.8 1.8]
     [6.1 3.  4.9 1.8]
     [6.4 2.8 5.6 2.1]
     [7.2 3.  5.8 1.6]
     [7.4 2.8 6.1 1.9]
     [7.9 3.8 6.4 2. ]
     [6.4 2.8 5.6 2.2]
     [6.3 2.8 5.1 1.5]
     [6.1 2.6 5.6 1.4]
     [7.7 3.  6.1 2.3]
     [6.3 3.4 5.6 2.4]
     [6.4 3.1 5.5 1.8]
     [6.  3.  4.8 1.8]
     [6.9 3.1 5.4 2.1]
     [6.7 3.1 5.6 2.4]
     [6.9 3.1 5.1 2.3]
     [5.8 2.7 5.1 1.9]
     [6.8 3.2 5.9 2.3]
     [6.7 3.3 5.7 2.5]
     [6.7 3.  5.2 2.3]
     [6.3 2.5 5.  1.9]
     [6.5 3.  5.2 2. ]
     [6.2 3.4 5.4 2.3]
     [5.9 3.  5.1 1.8]]
    

    
    
    
  • 相关阅读:
    TCP/IP学习笔记(3)-IP、ARP、RARP协议
    TCP/IP学习笔记(2)-数据链路层
    tcp/ip学习笔记(1)-基本概念
    实体bean里面不要轻易加transient,反序列回来之后会变成null
    [Maven实战-许晓斌]-[第三章] Mave使用入门二(在IDE中的使用) [第四章] 案例的背景介绍
    [Maven实战-许晓斌]-[第三章] Mave使用入门
    [Maven实战-许晓斌]-[第二章]-2.7-2.8 Mave安装的最优建议和安装小结
    [Maven实战-许晓斌]-[第二章]-2.6 NetBeans上面安装Maven插件
    ifdown
    ifup
  • 原文地址:https://www.cnblogs.com/SJMHJ/p/9882040.html
Copyright © 2020-2023  润新知