• 【NOIP合并果子】uva 10954 add all【贪心】——yhx


    Yup!! The problem name re
    ects your task; just add a set of numbers. But you may feel yourselves
    condescended, to write a C/C++ program just to add a set of numbers. Such a problem will simply
    question your erudition. So, lets add some
    avor of ingenuity to it.
    Addition operation requires cost now, and the cost is the summation of those two to be added. So,
    to add 1 and 10, you need a cost of 11. If you want to add 1, 2 and 3. There are several ways
    1 + 2 = 3, cost = 3 1 + 3 = 4, cost = 4 2 + 3 = 5, cost = 5
    3 + 3 = 6, cost = 6 2 + 4 = 6, cost = 6 1 + 5 = 6, cost = 6
    Total = 9 Total = 10 Total = 11
    I hope you have understood already your mission, to add a set of integers so that the cost is minimal.
    Input
    Each test case will start with a positive number, N (2  N  5000) followed by N positive integers
    (all are less than 100000). Input is terminated by a case where the value of N is zero. This case should
    not be processed.
    Output
    For each case print the minimum total cost of addition in a single line.

     1 #include<cstdio>
     2 #include<algorithm>
     3 using namespace std;
     4 int q1[5010],q2[5010],h1,h2,t,n;
     5 int get()
     6 {
     7     if (h1>n)
     8       return q2[h2++];
     9     if (h2>t)
    10       return q1[h1++];
    11     if (q1[h1]<=q2[h2])
    12       return q1[h1++];
    13     return q2[h2++];
    14 }
    15 int main()
    16 {
    17     int i,j,k,m,p,q,x,y,z,ans;
    18     while (scanf("%d",&n)==1&&n)
    19     {
    20         for (i=1;i<=n;i++)
    21           scanf("%d",&q1[i]);
    22         sort(q1+1,q1+n+1);
    23         ans=0;
    24         h1=h2=1;
    25         t=0;
    26         for (i=1;i<n;i++)
    27         {
    28             x=get();
    29             y=get();
    30             ans+=(x+y);
    31             q2[++t]=x+y;
    32         }
    33         printf("%d
    ",ans);
    34     }
    35 }

    和某年NOIP合并果子一模一样。

    思路是贪心,每次取两个最小值相加。

    具体实现方法有两种,一种是优先队列,O(nlogn)。

    另一种即是本代码。

    由于后得到的元素一定比先得到(是得到的,不算原来的)的元素大,所以可以开两个队列。

    一个队列放排好序的没动过的元素,另一个放新得到的元素。由于两个队列都是单调递增的,所以取最小元素只要看两个队列头即可。

    正当我以为得出了O(n)算法时,突然发现:排序要O(nlogn)。

    于是复杂度还是O(nlogn)。

  • 相关阅读:
    使用NPOI导出Excel 并设置Excel样式(合并单元格、行高、宽度、字体、边框、位置)...
    DevExpress GridView 单元格进度条
    c# groupBox 带标题边框,标题居中,重写控件
    COCO数据集下载断断续续后unzip无法解压
    SSD_论文+代码(pytorch)
    开始机器学习
    收藏 —— KVM网络虚拟化
    收藏 —— 教你阅读Python开源项目
    收藏 —— 活动目录讲解
    系统计划 Cron作业 为什么/etc/crontab /etc/cron.d /etc/cron.* 那么多的定义方式????
  • 原文地址:https://www.cnblogs.com/SBSOI/p/5574988.html
Copyright © 2020-2023  润新知