前三题水
A
#include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; int main() { int n, a, b; std::cin >> n >> a >> b; int bb = b; if (b < 0) bb = -b; while (bb--) { if (b < 0) { a--; } else { a++; } if (a == 0) { a = n; } else if (a == n + 1) { a = 1; } } std::cout << a << ' '; return 0; }
B
#include <bits/stdc++.h> typedef long long ll; const int M = 1e4 + 5; struct Info { std::string name; int score; bool operator < (const Info &rhs) const { return score > rhs.score; } }; std::vector<Info> vec[M]; bool same_three(int a, int b, int c) { return b == c; } bool same(int id) { return same_three (vec[id][0].score, vec[id][1].score, vec[id][2].score); } int main() { int n, m; std::cin >> n >> m; std::string str; int num, score; for (int i=0; i<n; ++i) { std::cin >> str >> num >> score; vec[num].push_back ((Info) {str, score}); } for (int i=1; i<=m; ++i) { if (vec[i].size () < 2) { puts ("?"); continue; } else { std::sort (vec[i].begin (), vec[i].end ()); if (vec[i].size () > 2 && same (i)) { puts ("?"); } else { std::cout << vec[i][0].name << " " << vec[i][1].name << ' '; } } } return 0; }
C
#include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; std::map<int, bool> vis; int main() { int n, m; scanf ("%d%d", &n, &m); for (int a, i=0; i<n; ++i) { scanf ("%d", &a); vis[a] = true; } std::vector<int> vec; int now = 1; while (m - now >= 0) { if (vis[now]) { now++; } else { m -= now; vec.push_back (now); now++; } } printf ("%d ", vec.size ()); for (int i=0; i<vec.size (); ++i) { printf ("%d%c", vec[i], i == vec.size () - 1 ? ' ' : ' '); } return 0; }
几何(叉积) D - Bicycle Race
题意:一个人从最下面的位置逆时针沿着湖转一圈,当转角指向湖的方向认为是危险的,问有多少个危险的转角.
分析:分类讨论也就四种情况,但是注意出发点不一定是最左边的(最下面的);也可以用叉积来判断,大于0表示是顺时针满足危险的定义.
#include <bits/stdc++.h> typedef long long ll; const int N = 1e4 + 5; struct Point { int x, y; }; Point point[N]; int main() { int n; scanf ("%d", &n); for (int i=0; i<=n; ++i) { scanf ("%d%d", &point[i].x, &point[i].y); } int ans = 0; for (int i=0; i<n-2; ++i) { if (point[i].x == point[i+1].x) { if (point[i+1].y > point[i].y) { if (point[i+2].x < point[i+1].x) { ans++; } } else { if (point[i+2].x > point[i+1].x) { ans++; } } } else { if (point[i].x < point[i+1].x) { if (point[i+1].y < point[i+2].y) { ans++; } } else { if (point[i+1].y > point[i+2].y) { ans++; } } } } printf ("%d ", ans); return 0; }
#include <bits/stdc++.h> typedef long long ll; const int N = 1e4 + 5; struct Point { int x, y; Point operator - (const Point &rhs) const { return (Point) {x - rhs.x, y - rhs.y}; } }; Point point[N]; typedef Point Vector; int cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } int main() { int n; scanf ("%d", &n); for (int i=0; i<=n; ++i) { scanf ("%d%d", &point[i].x, &point[i].y); } int ans = 0; for (int i=1; i<n; ++i) { if (cross (point[i-1] - point[i], point[i+1] - point[i]) < 0) { ans++; } } printf ("%d ", ans); return 0; }
题意:n个点,m条边,每条边是单向的,问如何安排每条边的方向使得入度为0的点最少,最少是几个.
分析:进行DFS,如果访问到已访问过的点表示该连通块有环,也就是可以满足每个点的入度大于等于1.
#include <bits/stdc++.h> const int N = 1e5 + 5; std::vector<int> G[N]; bool vis[N]; int n, m, add; void DFS(int u, int fa) { if (vis[u]) { add = 0; return ; } vis[u] = true; for (int i=0; i<G[u].size (); ++i) { int v = G[u][i]; if (v == fa) { continue; } DFS (v, u); } } int main() { scanf ("%d%d", &n, &m); for (int i=0; i<m; ++i) { int u, v; scanf ("%d%d", &u, &v); G[u].push_back (v); G[v].push_back (u); } int ans = 0; for (int i=1; i<=n; ++i) { if (vis[i]) { continue; } add = 1; DFS (i, 0); ans += add; } printf ("%d ", ans); return 0; }
题意:n*m的矩阵有不同高度的干草,现要割成高度相同的连通块,且其中至少一个干草的高度没有变化,以及连通块的高度和等于k,求可行的方案.
分析:统计出每个可以高度不变化且被k整除,且连通块数量不小于k/a[i][j],那么BFS一次能的得到方案.按照高度从大到小排序,对于当前的干草累加上周围高度不小于它的连通块数量,DP思想或者说是求前缀,用并查集维护.
#include <bits/stdc++.h> typedef long long ll; const int N = 1e3 + 5; int dx[] = {-1, 1, 0, 0}; int dy[] = {0, 0, -1, 1}; ll a[N][N]; bool vis[N][N]; int n, m; ll k, num, aim; int rt[N*N], rk[N*N]; int Find(int x) { return rt[x] == -1 ? x : rt[x] = Find (rt[x]); } void Union(int x, int y) { x = Find (x); y = Find (y); if (x == y) { return ; } rt[x] = y; rk[y] += rk[x]; } struct Info { ll val; int x, y; bool operator < (const Info &rhs) const { return val > rhs.val; } }; std::vector<Info> vec; bool judge(int x, int y) { if (x < 1 || x > n || y < 1 || y > m) { return false;; } return true; } void BFS(int x, int y) { std::queue<std::pair<int, int> > que; que.push (std::make_pair (x, y)); vis[x][y] = true; num--; while (!que.empty ()) { int nx = que.front ().first, ny = que.front ().second; que.pop (); for (int i=0; i<4; ++i) { int tx = nx + dx[i]; int ty = ny + dy[i]; if (num == 0) { continue; } if (!judge (tx, ty)) { continue; } if (vis[tx][ty]) { continue; } if (a[tx][ty] < aim) { continue; } vis[tx][ty] = true; num--; que.push (std::make_pair (tx, ty)); } } } void print() { for (int i=1; i<=n; ++i) { for (int j=1; j<=m; ++j) { if (vis[i][j]) { printf ("%I64d ", aim); } else { printf ("0 "); } } puts (""); } } int main() { scanf ("%d%d%I64d", &n, &m, &k); for (int i=1; i<=n; ++i) { for (int j=1; j<=m; ++j) { scanf ("%I64d", &a[i][j]); vec.push_back ((Info) {a[i][j], i, j}); } } std::sort (vec.begin (), vec.end ()); memset (rt, -1, sizeof (rt)); std::fill (rk, rk+N*N, 1); for (int i=0; i<vec.size (); ++i) { Info &r = vec[i]; if (r.val == 0) { break; } for (int j=0; j<4; ++j) { int tx = r.x + dx[j]; int ty = r.y + dy[j]; if (!judge (tx, ty)) { continue; } if (a[tx][ty] >= r.val) { Union ((tx-1)*m+ty, (r.x-1)*m+r.y); } } int fa = Find ((r.x-1)*m+r.y); if (k % r.val != 0 || k / r.val > rk[fa]) { continue; } puts ("YES"); num = k / r.val; aim = r.val; BFS (r.x, r.y); print (); return 0; } puts ("NO"); return 0; }