• 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea


    题目传送门

    题意:凸多边形的小岛在海里,问岛上的点到海最远的距离。

    分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点。

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015/11/10 星期二 14:16:17
    * File Name     :LA_3890.cpp
     ************************************************/
    
    #include <bits/stdc++.h>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 1e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const double EPS = 1e-10;
    const double PI = acos (-1.0);
    int dcmp(double x)  {       //三态函数,减少精度问题
        if (fabs (x) < EPS) return 0;
        else    return x < 0 ? -1 : 1;
    }
    struct Point    {       //点的定义
        double x, y;
        Point () {}
        Point (double x, double y) : x (x), y (y) {}
        Point operator + (const Point &r) const {       //向量加法
            return Point (x + r.x, y + r.y);
        }
        Point operator - (const Point &r) const {       //向量减法
            return Point (x - r.x, y - r.y);
        }
        Point operator * (double p) const {       //向量乘以标量
            return Point (x * p, y * p);
        }
        Point operator / (double p) const {       //向量除以标量
            return Point (x / p, y / p);
        }
        bool operator < (const Point &r) const {       //点的坐标排序
            return x < r.x || (x == r.x && y < r.y);
        }
        bool operator == (const Point &r) const {       //判断同一个点
            return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
        }
    };
    typedef Point Vector;       //向量的定义
    Point read_point(void)   {      //点的读入
        double x, y;    scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double dot(Vector A, Vector B)  {       //向量点积
        return A.x * B.x + A.y * B.y;
    }
    double cross(Vector A, Vector B)    {       //向量叉积
        return A.x * B.y - A.y * B.x;
    }
    double length(Vector A) {       //向量长度,点积
        return sqrt (dot (A, A));
    }
    double polar_angle(Vector A)  {     //向量极角
        return atan2 (A.y, A.x);
    }
    Vector nomal(Vector A)  {       //向量的单位法向量
        double len = length (A);
        return Vector (-A.y / len, A.x / len);
    }
    struct Line {
        Point p;
        Vector v;
        double ang;
        Line () {}
        Line (const Point &p, const Vector &v) : p (p), v (v)   {
            ang = polar_angle (v);
        }
        bool operator < (const Line &r) const {
            return ang < r.ang;
        }
        Point point(double a)   {
            return p + v * a;
        }
    };
    
    bool point_on_left(Point p, Line L) {
        return cross (L.v, p - L.p) > 0;
    }
    Point line_line_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
        Vector U = p - q;
        double t = cross (W, U) / cross (V, W);
        return p + V * t;
    }
    
    vector<Point> half_plane_inter(vector<Line> L)    {
        sort (L.begin (), L.end ());
        int first, last, n = L.size ();
        Point *p = new Point[n];
        Line *q = new Line[n];
        q[first=last=0] = L[0];
        for (int i=1; i<n; ++i) {
            while (first < last && !point_on_left (p[last-1], L[i]))    last--;
            while (first < last && !point_on_left (p[first], L[i]))  first++;
            q[++last] = L[i];
            if (dcmp (cross (q[last].v, q[last-1].v)) == 0) {
                last--;
                if (point_on_left (L[i].p, q[last]))    q[last] = L[i];
            }
            if (first < last)   p[last-1] = line_line_inter (q[last-1].p, q[last-1].v, q[last].p, q[last].v);
        }
        while (first < last && !point_on_left (p[last-1], q[first]))    last--;
        vector<Point> ps;
        if (last - first <= 1)  return ps;
        p[last] = line_line_inter (q[last].p, q[last].v, q[first].p, q[first].v);
        for (int i=first; i<=last; ++i) ps.push_back (p[i]);
        return ps;
    }
    
    Point ps[110];
    Vector V[110], V2[110];
    
    int main(void)    {
        int n;
        while (scanf ("%d", &n) == 1)   {
            if (!n) break;
            for (int i=0; i<n; ++i) ps[i] = read_point ();
            for (int i=0; i<n; ++i) {
                V[i] = ps[(i+1)%n] - ps[i];
                V2[i] = nomal (V[i]);
            }
            double l = 0, r = 20000;
            while (r - l > EPS)    {
                double mid = l + (r - l) / 2;
                vector<Line> L;
                for (int i=0; i<n; ++i) {
                    L.push_back (Line (ps[i] + V2[i] * mid, V[i]));
                }
                vector<Point> qs = half_plane_inter (L);
                int sz = qs.size ();
                if (sz == 0)    r = mid;
                else    l = mid;
            }
            printf ("%.6f
    ", l);
        }
    
       //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.
    ";
    
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    一条短信控制你的手机! Android平台的SQL注入漏洞浅析
    技术分享 Android动态调试程序
    [Java] java byte数组与int,long,short,byte转换
    技术分享:. 外部动态加载DEX文件风险浅谈
    TestLink的使用
    selenium_页面设计模式PageFactory与动态Xpath
    selenium_maven高级实战
    selenium_Jenkins高级实战篇
    将本地Git仓库中的内容上传至GitHub
    将本地下载的jar导入到本地的私有仓库中
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4953158.html
Copyright © 2020-2023  润新知