• 简单几何(圆与多边形公共面积) UVALive 7072 Signal Interference (14广州D)


    题目传送门

    题意:一个多边形,A点和B点,满足PB <= k * PA的P的范围与多边形的公共面积。

    分析:这是个阿波罗尼斯圆。既然是圆,那么设圆的一般方程:(x + D/2) ^ 2 + (y + E/2) ^ 2 = (D ^ 2 + E ^ 2 - 4 * F)  / 4,通过PB == PA * k解方程来求解圆心以及半径。然后就是套模板啦,上海交大的红书。

    #include <bits/stdc++.h>
    using namespace std;
     
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 5e2 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const double EPS = 1e-10;
    const double PI = acos (-1.0);
    
    int dcmp(double x)  {
        if (fabs (x) < EPS)   return 0;
        else    return x < 0 ? -1 : 1;
    }
    struct Point    {
        double x, y;
        Point ()    {}
        Point (double x, double y) : x (x), y (y) {}
        Point operator + (const Point &r) const {       //向量加法
            return Point (x + r.x, y + r.y);
        }
        Point operator - (const Point &r) const {
            return Point (x - r.x, y - r.y);
        }
        Point operator * (double p) const {       //向量乘以标量
            return Point (x * p, y * p);
        }
        Point operator / (double p) const {       //向量除以标量
            return Point (x / p, y / p);
        }
        bool operator < (const Point &r) const  {
            return x < r.x || (x == r.x && y < r.y);
        }
        bool operator == (const Point &r) const {
            return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
        }
    };
    typedef Point Vector;
    Point read_point(void)  {
        double x, y;    scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double polar_angle(Vector V)    {
        return atan2 (V.y, V.x);
    }
    double dot(Point a, Point b)    {
        return a.x * b.x + a.y * b.y;
    }
    double cross(Point a, Point b)  {
        return a.x * b.y - a.y * b.x;
    }
    double length(Vector V) {
        return sqrt (dot (V, V));
    }
    double my_sqrt(double x)    {
        return sqrt (max (0.0, x));
    }
     
    Point ps[N];
    double r, k;
    double x1, _y1, x2, _y2;
    int n;
     
    double sqr(double x)    {
        return x * x;
    }
     
    struct  Line    {
        Point p;
        Vector v;
        double r;
        Line () {}
        Line (const Point &p, const Vector &v) : p (p), v (v) {
            r = polar_angle (v);
        }
        Point point(double a)   {
            return p + v * a;
        }
    };
     
    struct Circle   {
        Point c;
        double r;
        Circle () {}
        Circle (Point c, double r) : c (c), r (r) {}
        Point point(double a)   {
            return Point (c.x + cos (a) * r, c.y + sin (a) * r);
        }
    };
     
    int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P)    {
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
        double delta = f * f - 4 * e * g;
        if (dcmp (delta) < 0)   return 0;
        if (dcmp (delta) == 0)  {
            t1 = t2 = -f / (2 * e); P.push_back (L.point (t1));
            return 1;
        }
        t1 = (-f - sqrt (delta)) / (2 * e);
        t2 = (-f + sqrt (delta)) / (2 * e);
        if (t1 > t2)    swap (t1, t2);
        if (dcmp (t1) > 0 && dcmp (t1 - 1) < 0) P.push_back (L.point (t1));
        if (dcmp (t2) > 0 && dcmp (t2 - 1) < 0) P.push_back (L.point (t2));
        return (int) P.size ();
    }
     
    double sector_area(Point a, Point b)    {
        double theta = polar_angle (a) - polar_angle (b);
        while (dcmp (theta) <= 0)   theta += 2 * PI;
        while (theta > 2 * PI)  theta -= 2 * PI;
        theta = min (theta, 2 * PI - theta);
        return r * r * theta / 2;
    }
     
    double cal(Point a, Point b)    {
        double t1, t2;
        bool ina = dcmp (length (a) - r) < 0;
        bool inb = dcmp (length (b) - r) < 0;
        if (ina && inb) return fabs (cross (a, b)) / 2.0;
        vector<Point> p;
        int num = line_cir_inter (Line (a, b - a), Circle (Point (0, 0), r), t1, t2, p);
        if (ina)    return sector_area (b, p[0]) + fabs (cross (a, p[0])) / 2.0;
        if (inb)    return sector_area (p[0], a) + fabs (cross (p[0], b)) / 2.0;
        if (num == 2)   return sector_area (a, p[0]) + sector_area (p[1], b) + fabs (cross (p[0], p[1])) / 2.0;
        return sector_area (a, b);
    }
     
    double cir_poly_area()  {
        double ret = 0;
        for (int i=0; i<n; ++i) {
            int sgn = dcmp (cross (ps[i], ps[i+1]));
            if (sgn != 0)   {
                ret += sgn * cal (ps[i], ps[i+1]);
            }
        }
        return ret;
    }
     
    void init(void) {
        double D = (2 * x2 - 2 * sqr (k) * x1) / (1 - sqr (k));
        double E = (2 * _y2 - 2 * sqr (k) * _y1) / (1 - sqr (k));
        double F = (sqr (k*x1)+sqr (k*_y1)-sqr (x2)-sqr(_y2)) / (1 - sqr (k));
        double x0 = D / 2, y0 = E / 2;
        r = sqrt (F + sqr (D)/4 + sqr (E)/4);
        for (int i=0; i<n; ++i) {
            ps[i].x -= x0;  ps[i].y -= y0;
        }
        ps[n] = ps[0];
    }
     
    int main(void)    {
        int cas = 0;
        while (scanf ("%d%lf", &n, &k) == 2)    {
            for (int i=0; i<n; ++i) {
                ps[i] = read_point ();
            }
            scanf ("%lf%lf", &x1, &_y1);
            scanf ("%lf%lf", &x2, &_y2);
            init ();
            printf ("Case %d: %.10f
    ", ++cas, fabs (cir_poly_area ()));
        }
     
       //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.
    ";
     
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    NLP Best Practices
    Bert模型精简方法
    delphi:对象的创建(create)与释放(free/destory)(转载)
    delphi:Format格式化函数(转载)
    delphi:destroy, free, freeAndNil, release用法和区别(转载)
    delphi:function ParamStr(i:LongInt):string
    jquery:上传文件
    bootstrapValidator中用ajax校验
    jquery中实时监控文本框的变化
    jquery判断checkbox是否选中
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4949990.html
Copyright © 2020-2023  润新知