题意:一个多边形,A点和B点,满足PB <= k * PA的P的范围与多边形的公共面积。
分析:这是个阿波罗尼斯圆。既然是圆,那么设圆的一般方程:(x + D/2) ^ 2 + (y + E/2) ^ 2 = (D ^ 2 + E ^ 2 - 4 * F) / 4,通过PB == PA * k解方程来求解圆心以及半径。然后就是套模板啦,上海交大的红书。
#include <bits/stdc++.h> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 5e2 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-10; const double PI = acos (-1.0); int dcmp(double x) { if (fabs (x) < EPS) return 0; else return x < 0 ? -1 : 1; } struct Point { double x, y; Point () {} Point (double x, double y) : x (x), y (y) {} Point operator + (const Point &r) const { //向量加法 return Point (x + r.x, y + r.y); } Point operator - (const Point &r) const { return Point (x - r.x, y - r.y); } Point operator * (double p) const { //向量乘以标量 return Point (x * p, y * p); } Point operator / (double p) const { //向量除以标量 return Point (x / p, y / p); } bool operator < (const Point &r) const { return x < r.x || (x == r.x && y < r.y); } bool operator == (const Point &r) const { return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0; } }; typedef Point Vector; Point read_point(void) { double x, y; scanf ("%lf%lf", &x, &y); return Point (x, y); } double polar_angle(Vector V) { return atan2 (V.y, V.x); } double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; } double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } double length(Vector V) { return sqrt (dot (V, V)); } double my_sqrt(double x) { return sqrt (max (0.0, x)); } Point ps[N]; double r, k; double x1, _y1, x2, _y2; int n; double sqr(double x) { return x * x; } struct Line { Point p; Vector v; double r; Line () {} Line (const Point &p, const Vector &v) : p (p), v (v) { r = polar_angle (v); } Point point(double a) { return p + v * a; } }; struct Circle { Point c; double r; Circle () {} Circle (Point c, double r) : c (c), r (r) {} Point point(double a) { return Point (c.x + cos (a) * r, c.y + sin (a) * r); } }; int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P) { double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r; double delta = f * f - 4 * e * g; if (dcmp (delta) < 0) return 0; if (dcmp (delta) == 0) { t1 = t2 = -f / (2 * e); P.push_back (L.point (t1)); return 1; } t1 = (-f - sqrt (delta)) / (2 * e); t2 = (-f + sqrt (delta)) / (2 * e); if (t1 > t2) swap (t1, t2); if (dcmp (t1) > 0 && dcmp (t1 - 1) < 0) P.push_back (L.point (t1)); if (dcmp (t2) > 0 && dcmp (t2 - 1) < 0) P.push_back (L.point (t2)); return (int) P.size (); } double sector_area(Point a, Point b) { double theta = polar_angle (a) - polar_angle (b); while (dcmp (theta) <= 0) theta += 2 * PI; while (theta > 2 * PI) theta -= 2 * PI; theta = min (theta, 2 * PI - theta); return r * r * theta / 2; } double cal(Point a, Point b) { double t1, t2; bool ina = dcmp (length (a) - r) < 0; bool inb = dcmp (length (b) - r) < 0; if (ina && inb) return fabs (cross (a, b)) / 2.0; vector<Point> p; int num = line_cir_inter (Line (a, b - a), Circle (Point (0, 0), r), t1, t2, p); if (ina) return sector_area (b, p[0]) + fabs (cross (a, p[0])) / 2.0; if (inb) return sector_area (p[0], a) + fabs (cross (p[0], b)) / 2.0; if (num == 2) return sector_area (a, p[0]) + sector_area (p[1], b) + fabs (cross (p[0], p[1])) / 2.0; return sector_area (a, b); } double cir_poly_area() { double ret = 0; for (int i=0; i<n; ++i) { int sgn = dcmp (cross (ps[i], ps[i+1])); if (sgn != 0) { ret += sgn * cal (ps[i], ps[i+1]); } } return ret; } void init(void) { double D = (2 * x2 - 2 * sqr (k) * x1) / (1 - sqr (k)); double E = (2 * _y2 - 2 * sqr (k) * _y1) / (1 - sqr (k)); double F = (sqr (k*x1)+sqr (k*_y1)-sqr (x2)-sqr(_y2)) / (1 - sqr (k)); double x0 = D / 2, y0 = E / 2; r = sqrt (F + sqr (D)/4 + sqr (E)/4); for (int i=0; i<n; ++i) { ps[i].x -= x0; ps[i].y -= y0; } ps[n] = ps[0]; } int main(void) { int cas = 0; while (scanf ("%d%lf", &n, &k) == 2) { for (int i=0; i<n; ++i) { ps[i] = read_point (); } scanf ("%lf%lf", &x1, &_y1); scanf ("%lf%lf", &x2, &_y2); init (); printf ("Case %d: %.10f ", ++cas, fabs (cir_poly_area ())); } //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s. "; return 0; }