• 简单几何(线段相交+最短路) POJ 1556 The Doors


    题目传送门

    题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离

    分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijkstra跑最短路。好题!

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015/10/24 星期六 09:48:49
    * File Name     :POJ_1556.cpp
     ************************************************/
    
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 300;
    const int E = N * N;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const double EPS = 1e-10;
    struct Point    {       //点的定义
        double x, y;
        Point (double x=0, double y=0) : x (x), y (y) {}
    };
    typedef Point Vector;       //向量的定义
    Point read_point(void)   {      //点的读入
        double x, y;
        scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double polar_angle(Vector A)  {     //向量极角
        return atan2 (A.y, A.x);
    }
    double dot(Vector A, Vector B)  {       //向量点积
        return A.x * B.x + A.y * B.y;
    }
    double cross(Vector A, Vector B)    {       //向量叉积
        return A.x * B.y - A.y * B.x;
    }
    int dcmp(double x)  {       //三态函数,减少精度问题
        if (fabs (x) < EPS) return 0;
        else    return x < 0 ? -1 : 1;
    }
    Vector operator + (Vector A, Vector B)  {       //向量加法
        return Vector (A.x + B.x, A.y + B.y);
    }
    Vector operator - (Vector A, Vector B)  {       //向量减法
        return Vector (A.x - B.x, A.y - B.y);
    }
    Vector operator * (Vector A, double p)  {       //向量乘以标量
        return Vector (A.x * p, A.y * p);
    }
    Vector operator / (Vector A, double p)  {       //向量除以标量
        return Vector (A.x / p, A.y / p);
    }
    bool operator < (const Point &a, const Point &b)    {       //点的坐标排序
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    bool operator == (const Point &a, const Point &b)   {       //判断同一个点
        return dcmp (a.x - b.x) == 0 && dcmp (a.y - b.y) == 0;
    }
    double length(Vector A) {       //向量长度,点积
        return sqrt (dot (A, A));
    }
    double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
        return acos (dot (A, B) / length (A) / length (B));
    }
    double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
        return fabs (cross (b - a, c - a)) / 2.0;
    }
    Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
        return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
    }
    Vector nomal(Vector A)  {       //向量的单位法向量
        double len = length (A);
        return Vector (-A.y / len, A.x / len);
    }
    Point point_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
        Vector U = p - q;
        double t = cross (W, U) / cross (V, W);
        return p + V * t;
    }
    double dis_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
        Vector V1 = b - a, V2 = p - a;
        return fabs (cross (V1, V2)) / length (V1);
    }
    double dis_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
      
        if (a == b) return length (p - a);
        Vector V1 = b - a, V2 = p - a, V3 = p - b;
        if (dcmp (dot (V1, V2)) < 0)    return length (V2);
        else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
        else    return fabs (cross (V1, V2)) / length (V1);
    }
    Point point_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
        Vector V = b - a;
        return a + V * (dot (V, p - a) / dot (V, V));
    }
    bool inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
        double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
               c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
        return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
    }
    bool on_seg(Point p, Point a1, Point a2)    {       //判断点在线段上,两点式
        return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
    }
    double area_poly(Point *p, int n)   {       //多边形面积
        double ret = 0;
        for (int i=1; i<n-1; ++i)   {
            ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
        }
        return ret / 2;
    }
    struct Edge {
        int v, nex;
        double w;
        Edge () {}
        Edge (int v, double w, int nex) : v (v), w (w), nex (nex) {}
        bool operator < (const Edge &r) const   {
            return w > r.w;
        }
    }edge[E];
    double d[N];
    int head[N];
    bool vis[N];
    int n, tot, e;
    
    void init(void) {
        memset (head, -1, sizeof (head));
        e = 0;
    }
    
    void add_edge(int u, int v, double w)   {
        edge[e] = Edge (v, w, head[u]);
        head[u] = e++;
    }
    
    void Dijkstra(int s)    {
        memset (vis, false, sizeof (vis));
        for (int i=0; i<tot; ++i) {
            d[i] = 1e9;
        }
        d[s] = 0;
        priority_queue<Edge> Q; Q.push (Edge (s, d[s], 0));
        while (!Q.empty ()) {
            int u = Q.top ().v; Q.pop ();
            if (vis[u]) continue;
            vis[u] = true;
            for (int i=head[u]; ~i; i=edge[i].nex)  {
                int v = edge[i].v;
                double w = edge[i].w;
                if (!vis[v] && d[v] > d[u] + w) {
                    d[v] = d[u] + w;
                    Q.push (Edge (v, d[v], 0));
                }
            }
        }
    }
    
    Point P[N];
    
    int main(void)    {
        while (scanf ("%d", &n) == 1)   {
            if (n == -1)    break;
            init ();
            tot = 0;    double x, y1, y2, y3, y4;
            P[tot++] = Point (0, 5);
            for (int i=0; i<n; ++i) {
                scanf ("%lf%lf%lf%lf%lf", &x, &y1, &y2, &y3, &y4);
                P[tot++] = Point (x, y1);
                P[tot++] = Point (x, y2);
                P[tot++] = Point (x, y3);
                P[tot++] = Point (x, y4);
            }
            P[tot++] = Point (10, 5);
            
            for (int i=0; i<tot; ++i)   {
                for (int j=i+1; j<tot; ++j) {
                    if (P[i].x == P[j].x)   continue;
                    bool flag = true;
                    for (int k=i+1; k<j; ++k)   {
                        if (P[k].x == P[i].x || P[k].x == P[j].x)   continue;
                        if (k % 4 == 1) {
                            if (inter (P[i], P[j], P[k], Point (P[k].x, 0)))    {
                                flag = false;   break;
                            }
                        }
                        else if (k % 4 == 0)    {
                            if (inter (P[i], P[j], P[k], Point (P[k].x, 10)))    {
                                flag = false;   break;
                            }
                        }
                        else if (k % 4 == 2)    {
                            if (inter (P[i], P[j], P[k], P[k+1]))    {
                                flag = false;   break;
                            }
                        }
                        else if (k % 4 == 3)    {
                            if (inter (P[i], P[j], P[k], P[k-1]))    {
                                flag = false;   break;
                            }
                        }
                    }
                    if (flag)   {
                        add_edge (i, j, length (P[j] - P[i]));
                    }
                }
            }
    
            Dijkstra (0);
            printf ("%.2f
    ", d[tot-1]);
        }
    
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    DotNetNuke 5 C#版本解读之1--架构介绍
    关于加入外包公司
    《深入浅出WPF》视频列表
    倒序输出字符串
    C#基础—— check、lock、using语句归纳
    Asp.net页面之间传递参数的几种方法
    sual C#中编写多线程程序之起步
    Head.First.ObjectOriented.Design.and.Analysis《深入浅出面向对象的分析与设计》读书笔记(一)
    索引分类
    表单提交中Get和Post方式的区别
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4906367.html
Copyright © 2020-2023  润新知