• 简单几何(线段与直线的位置) POJ 3304 Segments


    题目传送门

    题意:有若干线段,问是否存在一条直线,所有线段投影到直线上时至少有一个公共点

    分析:有一个很好的解题报告:二维平面上线段与直线位置关系的判定。首先原问题可以转换为是否存在一条直线与所有线段相交,然后可以离散化枚举通过枚举端点来枚举直线,再用叉积判断直线和线段是否相交。用到了叉积

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015/10/23 星期五 17:00:08
    * File Name     :POJ_3304.cpp
     ************************************************/
    
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 1e2 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const double EPS = 1e-8;
    struct Point    {       //点的定义
        double x, y;
        Point (double x=0, double y=0) : x (x), y (y) {}
    };
    typedef Point Vector;       //向量的定义
    Point read_point(void)   {      //点的读入
        double x, y;
        scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double polar_angle(Vector A)  {     //向量极角
        return atan2 (A.y, A.x);
    }
    double dot(Vector A, Vector B)  {       //向量点积
        return A.x * B.x + A.y * B.y;
    }
    double cross(Vector A, Vector B)    {       //向量叉积
        return A.x * B.y - A.y * B.x;
    }
    int dcmp(double x)  {       //三态函数,减少精度问题
        if (fabs (x) < EPS) return 0;
        else    return x < 0 ? -1 : 1;
    }
    Vector operator + (Vector A, Vector B)  {       //向量加法
        return Vector (A.x + B.x, A.y + B.y);
    }
    Vector operator - (Vector A, Vector B)  {       //向量减法
        return Vector (A.x - B.x, A.y - B.y);
    }
    Vector operator * (Vector A, double p)  {       //向量乘以标量
        return Vector (A.x * p, A.y * p);
    }
    Vector operator / (Vector A, double p)  {       //向量除以标量
        return Vector (A.x / p, A.y / p);
    }
    bool operator < (const Point &a, const Point &b)    {       //点的坐标排序
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    bool operator == (const Point &a, const Point &b)   {       //判断同一个点
        return dcmp (a.x - b.x) == 0 && dcmp (a.y - b.y) == 0;
    }
    double length(Vector A) {       //向量长度,点积
        return sqrt (dot (A, A));
    }
    double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
        return acos (dot (A, B) / length (A) / length (B));
    }
    double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
        return fabs (cross (b - a, c - a)) / 2.0;
    }
    Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
        return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
    }
    Vector nomal(Vector A)  {       //向量的单位法向量
        double len = length (A);
        return Vector (-A.y / len, A.x / len);
    }
    Point point_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
        Vector U = p - q;
        double t = cross (W, U) / cross (V, W);
        return p + V * t;
    }
    double dis_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
        Vector V1 = b - a, V2 = p - a;
        return fabs (cross (V1, V2)) / length (V1);
    }
    double dis_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
      
        if (a == b) return length (p - a);
        Vector V1 = b - a, V2 = p - a, V3 = p - b;
        if (dcmp (dot (V1, V2)) < 0)    return length (V2);
        else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
        else    return fabs (cross (V1, V2)) / length (V1);
    }
    Point point_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
        Vector V = b - a;
        return a + V * (dot (V, p - a) / dot (V, V));
    }
    bool inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
        double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
               c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
        return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
    }
    bool on_seg(Point p, Point a1, Point a2)    {       //判断点在线段上,两点式
        return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
    }
    double area_poly(Point *p, int n)   {       //多边形面积
        double ret = 0;
        for (int i=1; i<n-1; ++i)   {
            ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
        }
        return ret / 2;
    }
    /*
        点集凸包,输入点集会被修改
    */
    vector<Point> convex_hull(vector<Point> &P) {
        sort (P.begin (), P.end ());
        P.erase (unique (P.begin (), P.end ()), P.end ());      //预处理,删除重复点
        int n = P.size (), m = 0;
        vector<Point> ret (n + 1);
        for (int i=0; i<n; ++i) {
            while (m > 1 && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0)   m--;
            ret[m++] = P[i];
        }
        int k = m;
        for (int i=n-2; i>=0; --i)  {
            while (m > k && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0)   m--;
            ret[m++] = P[i];
        }
        if (n > 1)  m--;
        ret.resize (m);
        return ret;
    }
    struct Line {
        Point s, e;
        Line () {}
        Line (Point s, Point e) : s (s), e (e) {}
    };
    Line L[N];
    int n;
    
    bool judge(Point a, Point b)    {
        if (a == b) return false;
        for (int i=0; i<n; ++i) {
            if (cross (a - L[i].s, b - L[i].s) * cross (a - L[i].e, b - L[i].e) > 0)   return false;
        }
        return true;
    }
    
    int main(void)    {
        int T;  scanf ("%d", &T);
        while (T--) {
            scanf ("%d", &n);
            for (int i=0; i<n; ++i) {
                L[i] = Line (read_point (), read_point ());
            }
            if (n == 1) {
                puts ("Yes!");  continue;
            }
            bool flag = false;
            for (int i=0; i<n && !flag; ++i) {
                for (int j=i+1; j<n; ++j)   {
                    if (judge (L[i].s, L[j].s) || judge (L[i].s, L[j].e)
                        || judge (L[i].e, L[j].s) || judge (L[i].e, L[j].e))   {
                        flag = true;    break;
                    }
                }
            }
            if (flag)   puts ("Yes!");
            else    puts ("No!");
        }
    
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    网站负载均衡判断
    端口扫描nmap+masscan
    Ant Design Upload 组件之阻止文件默认上传
    Hybrid App技术解析
    react 路由
    webpack进阶(二)
    webpack进阶(一)
    webpack基础
    Promise原理及实现
    TS——类
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4905315.html
Copyright © 2020-2023  润新知