• 计算几何模板


    二维几何模板 -- learn from Rujia Liu

    const double EPS = 1e-10;
    const double PI = acos (-1.0);
    int dcmp(double x)  {       //三态函数,减少精度问题
        if (fabs (x) < EPS) return 0;
        else    return x < 0 ? -1 : 1;
    }
    struct Point    {       //点的定义
        double x, y;
        Point () {}
        Point (double x, double y) : x (x), y (y) {}
        Point operator + (const Point &r) const {       //向量加法
            return Point (x + r.x, y + r.y);
        }
        Point operator - (const Point &r) const {       //向量减法
            return Point (x - r.x, y - r.y);
        }
        Point operator * (double p) const {       //向量乘以标量
            return Point (x * p, y * p);
        }
        Point operator / (double p) const {       //向量除以标量
            return Point (x / p, y / p);
        }
        bool operator < (const Point &r) const {       //点的坐标排序
            return x < r.x || (x == r.x && y < r.y);
        }
        bool operator == (const Point &r) const {       //判断同一个点
            return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
        }
    };
    typedef Point Vector;       //向量的定义
    Point read_point(void)   {      //点的读入
        double x, y;    scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double dot(Vector A, Vector B)  {       //向量点积
        return A.x * B.x + A.y * B.y;
    }
    double cross(Vector A, Vector B)    {       //向量叉积
        return A.x * B.y - A.y * B.x;
    }
    double polar_angle(Vector A)  {     //向量极角
        return atan2 (A.y, A.x);
    }
    double length(Vector A) {       //向量长度,点积
        return sqrt (dot (A, A));
    }
    double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
        return acos (dot (A, B) / length (A) / length (B));
    }
    Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
        return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
    }
    Vector nomal(Vector A)  {       //向量的单位法向量
        double len = length (A);
        return Vector (-A.y / len, A.x / len);
    }
    Point line_line_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
        Vector U = p - q;
        double t = cross (W, U) / cross (V, W);
        return p + V * t;
    }
    double point_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
        Vector V1 = b - a, V2 = p - a;
        return fabs (cross (V1, V2)) / length (V1);
    }
    double point_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
        if (a == b) return length (p - a);
        Vector V1 = b - a, V2 = p - a, V3 = p - b;
        if (dcmp (dot (V1, V2)) < 0)    return length (V2);
        else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
        else    return fabs (cross (V1, V2)) / length (V1);
    }
    Point point_line_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
        Vector V = b - a;
        return a + V * (dot (V, p - a) / dot (V, V));
    }
    bool can_seg_seg_inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
        double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
               c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
        return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
    }
    bool can_line_seg_inter(Point a1, Point a2, Point b1, Point b2)    {        //判断直线与线段相交,两点式
        double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1);
        return dcmp (c1 * c2) <= 0;
    }
    bool on_seg(Point p, Point a, Point b)    {         //判断点在线段上,两点式
        return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0;
    }
    double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
        return fabs (cross (b - a, c - a)) / 2.0;
    }
    double area_poly(vector<Point> ps)  {       //多边形面积,叉积
        double ret = 0;
        for (int i=1; i<ps.size ()-1; ++i)  {
            ret += fabs (cross (ps[i] - ps[0], ps[i+1] - ps[0])) / 2;
        }
        return ret;
    }
    /*
        点集凸包,输入点的集合,返回凸包点的集合。
        凸包边上无点:<=    凸包边上有点:<
    */
    vector<Point> convex_hull(vector<Point> ps) {
        sort (ps.begin (), ps.end ());		//x - y排序
        ps.erase (unique (ps.begin (), ps.end ()), ps.end ());	//删除重复点
        int n = ps.size (), k = 0;
        vector<Point> qs (n * 2);
        for (int i=0; i<n; ++i) {
            while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0)  k--;
            qs[k++] = ps[i];
        }
        for (int t=k, i=n-2; i>=0; --i)  {
            while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0)  k--;
            qs[k++] = ps[i];
        }
        qs.resize (k-1);
        return qs;
    }
    
    struct Circle   {
        Point c;
        double r;
        Circle () {}
        Circle (Point c, double r) : c (c), r (r) {}
        Point point(double a)   {
            return Point (c.x + cos (a) * r, c.y + sin (a) * r);
        }
    };
    struct Line {
        Point p;
        Vector v;
        double r;
        Line () {}
        Line (const Point &p, const Vector &v) : p (p), v (v) {
            r = polar_angle (v);
        }
        Point point(double a)   {
            return p + v * a;
        }
    };
    /*
        直线与圆相交求交点,返回交点个数,交点保存在P中
    */
    int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P)    {
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
        double delta = f * f - 4 * e * g;
        if (dcmp (delta) < 0)   return 0;
        if (dcmp (delta) == 0)  {
            t1 = t2 = -f / (2 * e); P.push_back (L.point (t1));
            return 1;
        }
        t1 = (-f - sqrt (delta)) / (2 * e);
        t2 = (-f + sqrt (delta)) / (2 * e);
        if (t1 > t2)    swap (t1, t2);
        if (dcmp (t1) > 0 && dcmp (t1 - 1) < 0) P.push_back (L.point (t1));
        if (dcmp (t2) > 0 && dcmp (t2 - 1) < 0) P.push_back (L.point (t2));
        return (int) P.size ();
    }
    
    /*
        两圆相交求交点,返回交点个数。交点保存在P中
    */
    int cir_cir_inter(Circle C1, Circle C2, vector<Point> &P)    {
        double d = length (C1.c - C2.c);
        if (dcmp (d) == 0)  {
            if (dcmp (C1.r - C2.r) == 0)    return -1;      //两圆重叠
            else    return 0;
        }
        if (dcmp (C1.r + C2.r - d) < 0) return 0;
        if (dcmp (fabs (C1.r - C2.r) - d) < 0)  return 0;
        double a = polar_angle (C2.c - C1.c);
        double da = acos ((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));        //C1C2到C1P1的角?
        Point p1 = C1.point (a - da), p2 = C2.point (a + da);
        P.push_back (p1);
        if (p1 == p2)   return 1;
        else    P.push_back (p2);
        return 2;
    }
    /*
        过点到圆的切线,返回切线条数,切线保存在V中
    */
    int point_cir_tan(Point p, Circle C, Vector *V) {
        Vector u = C.c - p;
        double dis = length (u);
        if (dis < C.r)  return 0;
        else if (dcmp (dis - C.r) == 0) {
            V[0] = rotate (u, PI / 2);  return 1;
        }
        else    {
            double ang = asin (C.r / dis);
            V[0] = rotate (u, -ang);
            V[1] = rotate (u, +ang);
            return 0;
        }
    }
    /*
        两圆的公切线,返回公切线条数,切线短点保存在a和b中
    */
    int cir_cir_tan(Circle A, Circle B, Point *a, Point *b) {
        int cnt = 0;
        if (A.r < B.r)  {
            swap (A, B);    swap (a, b);
        }
        double d = dot (A.c - B.c, A.c - B.c);
        double rsub = A.r - B.r, rsum = A.r + B.r;
        if (dcmp (d - rsub) < 0)   return 0;   //内含
        double base = polar_angle (B.c - A.c);
        if (dcmp (d) == 0 && dcmp (A.r - B.r) == 0) return -1;  //两圆重叠
        if (dcmp (d - rsub) == 0)   {       //内切,一条切线
            a[cnt] = A.point (base);    b[cnt] = B.point (base);    cnt++;
            return 1;
        }
        //有外公切线
        double ang = acos (rsub / d);
        a[cnt] = A.point (base + ang);  b[cnt] = B.point (base + ang);  cnt++;
        a[cnt] = A.point (base - ang);  b[cnt] = B.point (base - ang);  cnt++;
        if (d == rsum)  {
            a[cnt] = A.point (base);    b[cnt] = B.point (base + PI);   cnt++;
        }
        else if (dcmp (d - rsum) > 0)   {       //两条内公切线
            double ang2 = acos (rsum / d);
            a[cnt] = A.point (base + ang2); b[cnt] = B.point (base + ang2 + PI);    cnt++;
            a[cnt] = A.point (base - ang2); b[cnt] = B.point (base - ang2 + PI);    cnt++;
        }
        return cnt;
    }
    /*
    	多边形与圆的公共面积,上交红书模板
    	调用fabs (cir_poly_area (ps)),ps为多边形的点集,
    	需要用到line_cir_inter ()函数,圆心在原点(可平移)
    */
    double sector_area(Point a, Point b, double r)    {		//三角剖分,求扇形面积
        double theta = polar_angle (a) - polar_angle (b);
        while (dcmp (theta) <= 0)   theta += 2 * PI;
        while (theta > 2 * PI)  theta -= 2 * PI;
        theta = min (theta, 2 * PI - theta);
        return r * r * theta / 2;
    }
    double cal(Point a, Point b, double r)    {
        double t1, t2;
        bool ina = dcmp (length (a) - r) < 0;
        bool inb = dcmp (length (b) - r) < 0;
        if (ina && inb) return fabs (cross (a, b)) / 2.0;
        vector<Point> p;
        int num = line_cir_inter (Line (a, b - a), Circle (Point (0, 0), r), t1, t2, p);
        if (ina)    return sector_area (b, p[0], r) + fabs (cross (a, p[0])) / 2.0;
        if (inb)    return sector_area (p[0], a, r) + fabs (cross (p[0], b)) / 2.0;
        if (num == 2)   return sector_area (a, p[0], r) + sector_area (p[1], b, r) + fabs (cross (p[0], p[1])) / 2.0;
        return sector_area (a, b, r);
    }
    double cir_poly_area(vector<Point> &ps, double r)  {
        double ret = 0;
        for (int i=0; i<ps.size ()-1; ++i) {		//多边形最后放入ps[0]起点
            int sgn = dcmp (cross (ps[i], ps[i+1]));
            if (sgn != 0)   {
                ret += sgn * cal (ps[i], ps[i+1], r);
            }
        }
        return ret;
    }
    
    //线段相交包括非规范相交
    bool can_seg_seg_inter2(Point a1, Point a2, Point b1, Point b2) {
        if (min (a1.x, a2.x) > max (b1.x, b2.x) ||
            min (a1.y, a2.y) > max (b1.y, b2.y) ||
            min (b1.x, b2.x) > max (a1.x, a2.x) ||
            min (b1.y, b2.y) > max (a1.y, a2.y)) return false;
        double c1 = (a1 - a2) ^ (a1 - b1);      //叉积
        double c2 = (a1 - a2) ^ (a1 - b2);
        double c3 = (b1 - b2) ^ (b1 - a1);
        double c4 = (b1 - b2) ^ (b1 - a2);
        return dcmp (c1 * c2) <= 0 && dcmp (c3 * c4) <= 0;
    }
    

      

    计算几何学习资料

    计算几何题目推荐

    编译人生,运行世界!
  • 相关阅读:
    Windows Mobile开发环境搭建指南 (转)
    值得纪念的日子
    怎么让百度快速重新收录
    Window.ShowModalDialog使用手册
    取得MS SQL 数据库中每个表的记录数及空间占用情况
    SQL 列转行
    C#中double.tostring() C#保存小数位 C#四舍五入
    sql行转列 列数据不定 sql交叉报表实例
    discuz点歌台插件
    统计数据库中各个表和空间使用情况
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4900553.html
Copyright © 2020-2023  润新知