• 「多项式快速幂」


    「多项式快速幂」

    前置知识

    多项式对数函数

    多项式指数函数

    基本问题

    给定一个 (n) 次多项式 (A(x)),求 (B(x)) 满足

    [B(x)equiv A^k(x) mod x^n ]

    (ln) 取对数

    [ln^{B(x)}=ln^{A^k(x)} ]

    [ln^{B(x)}=k imes ln^{A(x)} ]

    [B(x)=e^{k imes ln^{A(x)}} ]

    相当于是对多项式 (ln)(Exp) 的综合应用

    不过这种利用自然常数 (e) 做法比较局限,只能在 (a_0=1) 的情况下使用

    代码
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    using namespace std;
    
    const int maxn = 3e5 + 50, INF = 0x3f3f3f3f, mod = 998244353, inv3 = 332748118;
    
    inline int read () {
    	register int x = 0, w = 1;
    	register char ch = getchar ();
    	for (; ch < '0' || ch > '9'; ch = getchar ()) if (ch == '-') w = -1;
    	for (; ch >= '0' && ch <= '9'; ch = getchar ()) x = (1ll * x * 10 + ch - '0') % mod;
    	return x * w % mod;
    }
    
    inline void write (register int x) {
    	if (x / 10) write (x / 10);
    	putchar (x % 10 + '0');
    }
    
    int n, k;
    int a[maxn], b[maxn], c[maxn], rev[maxn];
    int res[maxn], tmp[maxn], now[maxn], typ[maxn];
    
    inline int qpow (register int a, register int b, register int ans = 1) {
    	for (; b; b >>= 1, a = 1ll * a * a % mod) 
    		if (b & 1) ans = 1ll * ans * a % mod;
    	return ans;
    }
    
    inline void NTT (register int len, register int * a, register int opt) {
    	for (register int i = 1; i < len; i ++) if (i < rev[i]) swap (a[i], a[rev[i]]);
    	for (register int d = 1; d < len; d <<= 1) {
    		register int w1 = qpow (opt, (mod - 1) / (d << 1));
    		for (register int i = 0; i < len; i += d << 1) {
    			register int w = 1;
    			for (register int j = 0; j < d; j ++, w = 1ll * w * w1 % mod) {
    				register int x = a[i + j], y = 1ll * w * a[i + j + d] % mod;
    				a[i + j] = (x + y) % mod, a[i + j + d] = (x - y + mod) % mod;
    			}
    		}
    	}
    }
    
    inline void Poly_Inv (register int d, register int * a, register int * b) {
    	if (d == 1) return b[0] = qpow (a[0], mod - 2), void ();
    	Poly_Inv ((d + 1) >> 1, a, b);
    	register int len = 1, bit = 0;
    	while (len < d << 1) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) res[i] = 0, rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << bit - 1);
    	for (register int i = 0; i < d; i ++) res[i] = a[i];
    	NTT (len, res, 3), NTT (len, b, 3);
    	for (register int i = 0; i < len; i ++) b[i] = ((2ll * b[i] % mod - 1ll * res[i] * b[i] % mod * b[i] % mod) % mod + mod) % mod;
    	NTT (len, b, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = 0; i < d; i ++) b[i] = 1ll * b[i] * inv % mod; for (register int i = d; i < len; i ++) b[i] = 0;
    }
    
    inline void Poly_Ln (register int d, register int * a, register int * b) {
    	register int len = 1, bit = 0;
    	while (len < d << 1) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) now[i] = tmp[i] = b[i] = 0;
    	for (register int i =0; i < d; i ++) now[i] = 1ll * a[i + 1] * (i + 1) % mod;
    	Poly_Inv (d, a, tmp), NTT (len, tmp, 3), NTT (len, now, 3);
    	for (register int i = 0; i < len; i ++) b[i] = 1ll * tmp[i] * now[i] % mod;
    	NTT (len, b, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = 0; i < len; i ++) b[i] = 1ll * b[i] * inv % mod;
    	for (register int i = d - 1; i >= 1; i --) b[i] = 1ll * b[i - 1] * qpow (i, mod - 2) % mod; 
    	for (register int i = d; i < len; i ++) b[i] = 0; b[0] = 0;
    }
    
    inline void Poly_Exp (register int d, register int * a, register int * b) {
    	if (d == 1) return b[0] = 1, void ();
    	Poly_Exp ((d + 1) >> 1, a, b);
    	register int len = 1, bit = 0;
    	while (len < d << 1) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) typ[i] = 0;
    	Poly_Ln (d, b, typ), typ[0] --;
    	for (register int i = 0; i < d; i ++) typ[i] = ((a[i] - typ[i]) % mod + mod) % mod;
    	NTT (len, typ, 3), NTT (len, b, 3);
    	for (register int i = 0; i < len; i ++) b[i] = 1ll * b[i] * typ[i] % mod;
    	NTT (len, b, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = 0; i < d; i ++) b[i] = 1ll * b[i] * inv % mod; for (register int i = d; i < len; i ++) b[i] = 0;
    }
    
    inline void Poly_qpow (register int k, register int * a, register int * b) {
    	Poly_Ln (n + 1, a, c);
    	for (register int i = 0; i <= n; i ++) c[i] = 1ll * c[i] * k % mod;
    	Poly_Exp (n + 1, c, b);
    }
    
    int main () {
    	n = read() - 1, k = read();
    	for (register int i = 0; i <= n; i ++) a[i] = read(); Poly_qpow (k, a, b);
    	for (register int i = 0; i <= n; i ++) printf ("%d ", b[i]); putchar ('
    ');
    	return 0;
    }
    
  • 相关阅读:
    [UE4]Visiblity、Render Opacity
    [UE4]Tool Tip
    [UE4]工程设置:自动捕获鼠标、通过代码设置鼠标显示隐藏、输入模式、编译时自动保存
    [UE4]蓝图节点的组织
    [UE4]宏
    [UE4]对象
    [UE4]传值与传引用
    [UE4]蓝图中的基本数据类型
    [UE4]位与字节
    [UE4]Delay与Retriggerable Delay
  • 原文地址:https://www.cnblogs.com/Rubyonly233/p/14214978.html
Copyright © 2020-2023  润新知