• 动手学深度学习 | 语言模型 | 53


    语言模型

    一只猴子打字,就算是打到宇宙毁灭,他也打不出莎士比亚的文章。

    语言模型的核心是估计联合概率(p(x_1,...,x_t)),序列模型的核心其实也就是预测整个文本序列出现的概率。

    我们使用一个最简单的计数模型来进行建模。

    一元只有一个变量,也就是自己,那么就可以认为每个变量都是独立的..

    这是一个很现实的问题,就是序列太长不能被一次读入内存中应该如何处理?

    两种方式:随机采样 & 顺序分区

    随机采样就是随机丢弃前面k个数据,k属于([0,num_step-1])

    随机采样的话,每一个batch的子序列之间都可以认为是独立的。

    随机采样的话,相邻的两个batch的子序列是连续的。

    代码

    代码展示的是时序序列的语言模型是如何读取数据以及生成mini_batch的。

    QA

    1. 在文本预处理中,所构建的词汇表把文本映射成数字,文本数据量越大,映射的数字也就越大,这些数字还需要做预处理吗?例如归一化处理等,是否模型有影响?

    这些数字使用做成embedding层用的,它不会真的作为一个数字传给RNN模型,这些数字在这些地方只是一个id,后面会具体介绍这些数字具体是如何使用的。

    1. 语言sequence sample(token是word)的时间跨度T大概设成多少比较好?如果是中文的话一般又是多少?

    这个东西取决于你一句话有多长,取决于你是想对一句话建模还是对一段话建模。这个T取16,32,64,128,长一点512也是有的。沐神认为32是一个不错的选项,当然越长计算量越大,收敛也会变得慢,当然不是所有模型都能够去处理很长的序列。

  • 相关阅读:
    BeautifulSoup 安装使用
    用Mediawiki做百科网站资源大参考
    ubutun 下webalizer 分析Apache日志
    网站流量统计系统 phpMyVisites
    mysql的root密码忘记解决方
    mrtg监控网络流量简单配置
    CentOS 6.4下Squid代理服务器的安装与配置,反向代理
    linux 查看文件系统类型
    JAVA多媒体编程入门(图像部分)
    log4net使用具体解释
  • 原文地址:https://www.cnblogs.com/Rowry/p/15343292.html
Copyright © 2020-2023  润新知