• 动手学深度学习 | 卷积层里的填充和步幅 | 18


    填充和步幅

    先将两个控制卷积层输出大小的超参数:填充 & 步幅。

    上面是一个例子,如果是一张(32*32)的图片,使用一个(5*5)的kernel来进行卷积,那么在第7层的时候图片大小会变成(4*4),那么就不能在进行卷积了,换句话说就是,卷积层最多只能进行7层。

    那如果要做深应该怎么办?(其实深度学习就是要做深!)

    解决feature_map不断缩小的第一个方法就是填充,就是我们在四周加入额外的行和列,达到说我们的输出可以比以前更大。

    一般填充(p)大小,通常取值(p=k-1),这样做是为让卷积后feature_map的size可以保持不变。

    结论:一般很少使用偶数的卷积核,都是使用奇数的卷积核。

    ((224-4)/4=55)

    下图是步幅为2的走法。

    神奇GIF动画让你秒懂各种深度学习卷积神经网络操作原理

    通常步幅就是取2,这样每次的feature_map的size会减少一半。

    代码实现

    QA

    1. 这几个超参数的影响重要程度排序是怎么样的?核大小,填充,步幅。
    • 核大小:核大小当然是最重要的,一般都是使用(3*3),最大不会超过(7*7)而且都是奇数
    • 填充:padding一般就是取(k-1),就是为了保证feature_map不变,但是注意,pytorch中的padding是both sides。
    • 步幅:strides一般是取2,每次减半。当然能够取1是最好的,因为可以看到更多的信息,但是我们一般最终就是要把一张图片缩小成(5*5),最大不超过(7*7)的样子,stride=1计算太慢了(要有很多个卷积层),使用stride=2就是为了减少计算量。所以stride什么时候取2,纯粹看我的计算复杂度是什么需求,一般做法就是把stride=2的层均匀的插入网络中。
    1. 为什么卷积核的边长一般选奇数?

    一般都是选(3*3),一个好处是好对称,还有就是可以保留一定的空间信息。

    但是有论文也说过其实(2*2)的卷积核效果也差不多。

    1. 一般卷积处理完,输出维度都要减半,为什么这里要提出输入输出保持不变?

    就是为了能够把卷积网络做深啊!比如224,如果不保持不变,做不了几层的。

    1. 现在已经有很多经典的网络结构了,对于各种任务有各种结构,我们平时使用的时候,自己设计卷积核大小的情况多吗?还是直接套用经典结构?

    我们一般都是使用经典的网络结构。或者更简单来说,你就用ResNet,ResNet是有一个系列的,18层、34层、50层、152层都是可以的。

    一般来说大家都不会去手写神经网络,除非除非你的输入是一个非常不一样的情况。一般都是直接套用经典结构或在经典的结构上稍微做一些调整。

    1. 为什么要用(3*3)的卷积核,(3*3)的视野很小

    (3*3)是因为多个(3*3)串联,可以等效大的卷积核,而且计算代价低。比如两个(3*3)串联可以对应一个(5*5)的感受野。如果最后输出的的大小是(1*1)的话,并且stride不是特别大,那么这个(1*1)是一定可以看到整个大小的图片。

  • 相关阅读:
    int是逻辑炸弹吗?
    悲剧
    下班啦
    Android SDK 2.2 开发环境安装
    MVC
    用于主题检测的临时日志(61d47e0cd5874842a9f56a725c1f25f6 3bfe001a32de4114a6b44005b770f6d7)
    ASP.NET读取XML文件
    asp.net执行顺序
    理解POCO
    乐观中谨慎 招聘调薪现"贫富差距"
  • 原文地址:https://www.cnblogs.com/Rowry/p/15321751.html
Copyright © 2020-2023  润新知