Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
思考:BFS。
class Solution { public: int ladderLength(string start, string end, unordered_set<string> &dict) { queue<pair<string,int>> q; unordered_set<string> visited; q.push(make_pair(start, 1)); visited.insert(start); while (!q.empty()) { string curStr = q.front().first; int curStep = q.front().second; q.pop(); for (int i = 0; i < curStr.size(); ++i) { string tmp = curStr; for (int j = 0; j < 26; ++j) { tmp[i] = j+'a'; if(tmp == end) return curStep+1; if(visited.find(tmp) == visited.end() && dict.find(tmp) != dict.end()) { q.push(make_pair(tmp, curStep+1)); visited.insert(tmp); } } } } return 0; } };