Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思考:动态规划。
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int n=triangle.size(); int *dp=new int[n]; int i,j; for(i=0;i<n;i++) { dp[i]=triangle[n-1][i]; } for(i=n-2;i>=0;i--) { for(j=0;j<=i;j++) { dp[j]=min(dp[j],dp[j+1])+triangle[i][j]; } } int maxsum=dp[0]; delete []dp; return maxsum; } };