• HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]


    Max Sum Plus Plus


    Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 22262    Accepted Submission(s): 7484
     
    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     
    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     
    Output
    Output the maximal summation described above in one line.
     
    Sample Input
    1 3 1 2 3 2 6 -1 4 -2 3 -2 3
     
    Sample Output

    6 8

    [题意]:输入一个m,n分别表示成m组,一共有n个数即将n个数分成m组,m组的和加起来得到最大值并输出。

    [分析]:

    状态dp[i][j]表示前j个数分成i组的最大值。

    动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j)

    dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必须放在前一组里面。

    max( dp[i-1][k] ) + a[j] )表示的前(0<k<j)分成i-1组,第j个单独分成一组。

    但是题目的数据量比较到,时间复杂度为n^3,n<=1000000,显然会超时,继续优化。

    max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
    的最大值 用数组保存下来 ,这样时间复杂度为 n^2。

     

    [代码]:

     1 /*
     2 输入一个m,n分别表示成m组,一共有n个数
     3 即将n个数分成m组,
     4 m组的和加起来得到最大值并输出。
     5 */
     6 #include <bits/stdc++.h>
     7 using namespace std;
     8 const int N=1000000;
     9 #define INF 0x7fffffff
    10 
    11 int a[N+10];
    12 int dp[N+10],Max[N+10];
    13 
    14 int main()
    15 {
    16     int n,m,maxs;
    17     while(~scanf("%d%d",&m,&n))
    18     {
    19         for(int i=1;i<=n;i++)
    20         {
    21             scanf("%d",&a[i]);
    22         }
    23         memset(dp,0,sizeof(dp));
    24         memset(Max,0,sizeof(Max));
    25 
    26         for(int i=1;i<=m;i++)
    27         {
    28             maxs=-INF;
    29             for(int j=i;j<=n;j++)
    30             {
    31                 dp[j]=max(dp[j-1]+a[j], Max[j-1]+a[j]);
    32                 Max[j-1]=maxs;
    33                 maxs=max(maxs, dp[j]);
    34             }
    35         }
    36         printf("%d
    ",maxs);
    37     }
    38 }
    线性DP
  • 相关阅读:
    python读取文件报错:pandas.errors.ParserError: iterator should return strings, not bytes (did you open the file in text mode?)
    Python关键字排序
    Python中赋值和print笔记
    python元祖和文件用法举例
    Python 列表和字典用法解释
    python中字符串及字符串的格式化
    python动态类型简介
    Python中关于深复制和浅复制详细解释
    Python中常用数字类型
    python内置对象的一些知识
  • 原文地址:https://www.cnblogs.com/Roni-i/p/8423951.html
Copyright © 2020-2023  润新知