Max Sum Plus Plus
Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22262 Accepted Submission(s): 7484
Problem Description
Now I think you have got an AC in
Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge
ourselves to more difficult problems. Now you are faced with a more
difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6 8
[题意]:输入一个m,n分别表示成m组,一共有n个数即将n个数分成m组,m组的和加起来得到最大值并输出。
[分析]:
状态dp[i][j]表示前j个数分成i组的最大值。
动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j)
dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必须放在前一组里面。
max( dp[i-1][k] ) + a[j] )表示的前(0<k<j)分成i-1组,第j个单独分成一组。
但是题目的数据量比较到,时间复杂度为n^3,n<=1000000,显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来 ,这样时间复杂度为 n^2。
[代码]:
1 /* 2 输入一个m,n分别表示成m组,一共有n个数 3 即将n个数分成m组, 4 m组的和加起来得到最大值并输出。 5 */ 6 #include <bits/stdc++.h> 7 using namespace std; 8 const int N=1000000; 9 #define INF 0x7fffffff 10 11 int a[N+10]; 12 int dp[N+10],Max[N+10]; 13 14 int main() 15 { 16 int n,m,maxs; 17 while(~scanf("%d%d",&m,&n)) 18 { 19 for(int i=1;i<=n;i++) 20 { 21 scanf("%d",&a[i]); 22 } 23 memset(dp,0,sizeof(dp)); 24 memset(Max,0,sizeof(Max)); 25 26 for(int i=1;i<=m;i++) 27 { 28 maxs=-INF; 29 for(int j=i;j<=n;j++) 30 { 31 dp[j]=max(dp[j-1]+a[j], Max[j-1]+a[j]); 32 Max[j-1]=maxs; 33 maxs=max(maxs, dp[j]); 34 } 35 } 36 printf("%d ",maxs); 37 } 38 }