• codeforces Round 442 B Nikita and string【前缀和+暴力枚举分界点/线性DP】


    B. Nikita and string
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    One day Nikita found the string containing letters "a" and "b" only.

    Nikita thinks that string is beautiful if it can be cut into 3 strings (possibly empty) without changing the order of the letters, where the 1-st and the 3-rd one contain only letters "a" and the 2-nd contains only letters "b".

    Nikita wants to make the string beautiful by removing some (possibly none) of its characters, but without changing their order. What is the maximum length of the string he can get?

    Input

    The first line contains a non-empty string of length not greater than 5 000 containing only lowercase English letters "a" and "b".

    Output

    Print a single integer — the maximum possible size of beautiful string Nikita can get.

    Examples
    input
    abba
    output
    4
    input
    bab
    output
    2
    Note

    It the first sample the string is already beautiful.

    In the second sample he needs to delete one of "b" to make it beautiful.

    【题意】:给你一个只含a,b的字符串,可以不改顺序地删去(也可以不删)一些字符使得其变为beautiful string。求能得到的最长beautiful string。beautiful string定义:字符串被分成三段(可以有空),不改变顺序,第一段和第三段只含有a,第二段只含有b。如:aa...aa/bb...bb/aa...aa 。

    【分析】:

    1.sa[i]表示[0,i)区间中a的个数,相当于前缀和,然后你遍历i,j把区间分成[0,i)[i,j)[j,n)三部分,求最大值即可
    2.A[l]+A[i]-A[j]+B[j]-B[i],l代表字符串长度,直接预处理,预处理一下前i位和后i位有多少个a,然后直接枚举划分的位置
    3.sa[i]表示 前i项有多少个a,sb[i]表示 前i项有多少个b,然后暴力n方可以枚举两个边界
    取第一段[1,i]中所有的a,取第二段(i,j]中所有的b,取第三段(j,n]中所有的a,sa[i]代表[1,i],sa[i]-sa[j]就是[1,i]-[1,j]就是(j,i]

    4.O(n)思路相当于直接dp
    a表示当前只有第一段时的最大长度
    ab表示当前有两段时的最大长度
    aba表示有三段时的最大长度,也就是当前的答案

    【代码】:

    #include<bits/stdc++.h>
    using namespace std;
    #define pb push_back
    #define mp make_pair
    typedef long long ll;
    
    const int mn=5e3+5;
    int n;
    char s[mn];
    int sa[mn],sb[mn];
    
    int main() {
        scanf("%s",s+1);
        n=strlen(s+1);
        for(int i=1; i<=n+1; i++) {
            sa[i]=sa[i-1]+(s[i]=='a');//前i项多少个a
            sb[i]=sb[i-1]+(s[i]=='b');
        }
        int ans=0;
        for(int i=0; i<=n+1; i++) {
            for(int j=i; j<=n+1; j++) {
                ans=max(ans,sa[i]+sb[j]-sb[i]+sa[n]-sa[j]);
            }
        }
        printf("%d
    ",ans);
        return 0;
    }
    O(n^2)枚举
    #include<bits/stdc++.h>
    using namespace std;
    int main(void)
    {
        std::ios::sync_with_stdio(false);
            string s;
            cin>>s;
            int n=s.length(),i;
            int a=0,aba=0,ab=0;
            for(i=0;i<n;i++)
            {
                if(s[i]=='a') aba++,a++;
                if(s[i]=='b') ab++;
                aba=max(aba,ab);
                ab=max(ab,a);
            }
            cout<<aba;
        return 0;
    }
    O(n)dp
  • 相关阅读:
    Linux服务器程序规范化
    Linux I/O函数
    IP协议详解
    Linux C++ 连接 MySQL
    I/O复用
    Linux网络编程基础API
    TCP协议详解
    React源码解携(二): 走一趟render流程
    记账项目 webpack优化
    前端监控系统博客总结
  • 原文地址:https://www.cnblogs.com/Roni-i/p/7722967.html
Copyright © 2020-2023  润新知