如下图所示,我们要计算的是c点到直线ab的距离。
首先我们要认识到,虽然在数学上,【点】与【向量】是两种不同的名词,但在实际的计算中是可以直接把【点】的坐标视为从坐标系【原点】到【点】的【向量】。有了这个前提,线段ab其实可以简单地表示为向量n,其他的向量同理可得。用向量解决这个问题的关键是求出v在n上的投影向量vn。
经过推导,得到等式 (注意【点乘】和【乘以】的区别)
为了便于计算,可以把等式写为这样
【点乘】的计算优先级高于【乘以】,所以该等式是通过计算出投影向量vn的【模】,然后再乘以n的标准化向量也就是vn的方向,最后得到vn
。前面提到过,【点】和【向量】可视为等价的,也就是说【向量】也可以代表【点】的坐标,所以求出了vn,也就等价于求出了c到ab的垂线与ab(ab的延长线)相交的点的坐标。然后我们利用两点间的距离公式即可以求出c到ab的距离。下面直接上代码。
using System; using System.Numerics; namespace _3dMath { class VectorCalculate{ public VectorCalculate(Vector3 point_a, Vector3 point_b, Vector3 point_c) { _point_a = point_a; _point_b = point_b; _point_c = point_c; } public float DistanceCalculate() { Vector3 vec_ab = _point_b - _point_a; Vector3 vec_ac = _point_c - _point_a; float distance = 0.0f; Vector3 vec_Normalize = Vector3.Normalize(vec_ab); float projection_length = Vector3.Dot(vec_ac, vec_Normalize); //计算出投影向量的模 Vector3 vec_Projection = Vector3.Multiply(projection_length, vec_Normalize); //计算出投影向量 distance = Vector3.Distance(vec_ac, vec_Projection); return distance; } private Vector3 _point_a; private Vector3 _point_b; private Vector3 _point_c; } class Test{ static void Main(string[] arg) { Vector3 point_a = new Vector3(1.0f, 1.0f, 1.0f); Vector3 point_b = new Vector3(5.0f, 2.0f, 1.0f); Vector3 point_c = new Vector3(2.0f, 3.0f, 1.0f); //Vector3 point_c = new Vector3(-1.0f, 2.0f, 0.0f); VectorCalculate vec_Calculate = new VectorCalculate(point_a, point_b, point_c); float res = vec_Calculate.DistanceCalculate(); Console.WriteLine("The distance is: {0}", res); } } }
最后,如果各位发现内容有不严谨的地方,希望能够在评论区指出,欢迎讨论。