• "巴卡斯杯" 中国大学生程序设计竞赛


    Participants of the Luck Competition choose a non-negative integer no more than 100 in their mind. After choosing their number, let KK be the average of all numbers, and MM be the result of K×23K×23. Then the lucky person is the one who choose the highest number no more than MM. If there are several such people, the lucky person is chosen randomly. 

    If you are given a chance to know how many people are participating the competition and what their numbers are, calculate the highest number with the highest probability to win assuming that you're joining the competition. 

    Input

    There are several test cases and the first line contains the number of test cases T(T≤10)T(T≤10). 

    Each test case begins with an integer N(1<N≤100)N(1<N≤100), denoting the number of participants. And next line contains N−1N−1 numbers representing the numbers chosen by other participants. 
     

    Output

    For each test case, output an integer which you have chosen and the probability of winning (round to two digits after the decimal point), seperated by space. 
     

    Sample Input

    3
    4
    1 2 3
    4
    1 1 2
    4
    20 30 40

    Sample Output

    1 0.50
    0 1.00
    18 1.00
    #include<iostream>
    using namespace std;
    int a[1000]; 
    int main()
    {
    	int n,m,j,k,i,T;
    	cin>>T;
    	while (T--)
    	{
    		int sum=0;
    		scanf("%d",&n);
    		for (i=0;i<n-1;i++)
    		{
    			cin>>a[i];
    			sum+=a[i];
    		}
    			
    		int SUM=1;
    		int ans = (double)2.0*sum/(3.0*n-2.0);
    		for (i=0;i<n-1;i++)
    		{
    			if (a[i]==ans)
    			SUM++;
    		}
    		double ANS = 1.0/double(SUM);
    		printf("%d %.2lf
    ",ans,ANS);
    	}
    	
    	return 0;
     } 
  • 相关阅读:
    0101
    正则表达式 re模块
    经典算法>>mor-c3 / 删除排序
    网络编程
    面向对象>>类(三大特性:继承多态封装)>>反射,内置函数/方法,
    经典算法>冒泡 和二分法
    Apollo 5.0 障碍物行为预测技术
    一种新颖鲁棒的自动驾驶车辆换道轨迹规划方法
    自动驾驶中轨迹规划的探索和挑战
    Lattice Planner规划算法
  • 原文地址:https://www.cnblogs.com/Romantic-Chopin/p/12451354.html
Copyright © 2020-2023  润新知