uva 12524
题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi;
问把n个点的东西合并成k个的最小花费;
分析:设dp[j][i]表示把前i个点的东西合并成j个点的最小花费,那么dp[j][i] = min( dp[j-1][k] + w[k+1]*(x[i] - x[k+1]) + w[k+2]*(x[i] - x[k+2]) + ... + w[i] * (x[i] - x[i]));
设sw[i] = w[1] + w[2] + ...+w[i];
swx[i] = w[1]*x[1] + w[2]*x[2] + ... + w[i]*x[i];
那么 dp[j][i] = min( dp[j-1][k] + x[i] * (sw[i] - sw[k]) - (swx[i] - swx[k]) , 0<k<i );
显然dp[j][i] = -x[i] * sw[k] + swx[k] + dp[j-1][k] + x[i] * sw[i] - swx[i];
斜率为 x[i];
x = sw[k]; y = swx[k] + dp[j-1][k];然后套模板;
1 #include<cstdio> 2 #include<iostream> 3 #include<cmath> 4 #include<algorithm> 5 #include<vector> 6 #include<cstdlib> 7 #include<cstring> 8 #include<set> 9 #include<map> 10 #include<queue> 11 #define lson l,m,rt<<1 12 #define rson m+1,r,rt<<1|1 13 #define pbk push_back 14 #define mk make_pair 15 using namespace std; 16 typedef long long LL; 17 const int N = 1000+10; 18 const double eps = 1e-8; 19 inline int dcmp(double x) { 20 return x < -eps ? -1 : x > eps; 21 } 22 LL x[N],sw[N],swx[N],w[N]; 23 int n,k; 24 LL dp[N][N]; 25 struct Point{ 26 LL x,y; 27 Point (LL x = 0, LL y = 0):x(x),y(y){} 28 Point operator - (const Point &p)const{ 29 return Point(x - p.x, y - p.y); 30 } 31 LL operator * (const Point &p)const{ 32 return x * p.y - y * p.x; 33 } 34 }; 35 struct dequeue{ 36 int head,tail; 37 Point q[N]; 38 void init(){ 39 head = 1; tail = 0; 40 } 41 void push(const Point &u){ 42 while (head < tail && (q[tail] - q[tail - 1]) * (u - q[tail - 1]) <= 0 ) tail--; 43 q[++tail] = u; 44 } 45 Point pop(const LL &k) { 46 while (head < tail && k*q[head].x + q[head].y >= k*q[head+1].x + q[head+1].y) head++; 47 return q[head]; 48 } 49 }H; 50 void solve(){ 51 sw[0] = swx[0] = 0; 52 for (int i = 1; i <= n; i++) { 53 sw[i] = sw[i-1] + w[i]; 54 swx[i] = swx[i-1] + w[i]*x[i]; 55 } 56 memset(dp,0,sizeof(dp)); 57 for (int i = 1; i <= n; i++) { 58 dp[1][i] = x[i]*sw[i] - swx[i]; 59 } 60 for (int j = 2; j <= k; j++){ 61 H.init(); 62 63 H.push(Point(sw[j-1],swx[j-1] + dp[j-1][j-1])); 64 for (int i = j; i <= n; i++) { 65 Point p = H.pop(-x[i]); 66 dp[j][i] = x[i]*sw[i] - swx[i] - x[i] * p.x + p.y; 67 H.push(Point(sw[i],swx[i] + dp[j-1][i])); 68 } 69 } 70 printf("%lld ",dp[k][n]); 71 72 } 73 int main(){ 74 while (~scanf("%d%d",&n,&k)) { 75 for (int i = 1; i <= n; i++) { 76 scanf("%lld%lld",&x[i],&w[i]); 77 } 78 solve(); 79 } 80 return 0 ; 81 }
cf319C
http://codeforces.com/contest/319/problem/C
1 /* 2 题意:有n课树要砍,每次只能砍1个单位的长度,每次砍完后都要花费已经砍完的id最大的树的bi时间充电,a1 = 1; 3 并且 bn = 0; 问最少花多少时间把树砍完; 4 5 设DP[i]表示使当前已经砍完的树的最大ID是i的最小花费 6 方程:DP[i] = DP[j] + b[j] + (a[i]-1)*b[j]; //最后一棵树只需要a[i]-1次,第一b[j]表示补上上一棵树的最后一次; 7 8 然后就是标准的斜率DP; 9 DP[i] = DP[j] + a[i]*b[j]; 10 设 b[j] = x[j]; DP[j] = y[j]; 11 G = a[i]*x[j]+y[j]; 12 因为x[j]是单调递减的,y[j]是单调递增的,a[i]是单调递增的; 13 所以满足条件; 14 套一下模板就好; 15 16 trick: 在做Cross()时会爆LL,然后又因为我那样写u.x,v.x都是负数,移项要变符号, 17 然后太懒,没有自己造例子,样例一直可以跑出,花了一个晚上找BUG,教训啊!! 18 19 */ 20 #include<cstring> 21 #include<cstdlib> 22 #include<cstdio> 23 #include<cmath> 24 #include<iostream> 25 #include<algorithm> 26 #include<vector> 27 using namespace std; 28 typedef long long LL; 29 const int N=100000+10; 30 struct Point{ 31 LL x,y; 32 Point (LL a=0,LL b=0):x(a),y(b){} 33 Point operator - (const Point &p)const{ 34 return Point(x-p.x,y-p.y); 35 } 36 }; 37 const double eps = 1e-10; 38 int dcmp(double x){ 39 return x < -eps ? -1 : x > eps; 40 } 41 LL Cross(const Point &u,const Point &v){ 42 if (dcmp(u.x*1.0/v.x - u.y*1.0/v.y) <= 0) return 1; 43 return -1; 44 } 45 Point q[N]; 46 int head,tail; 47 void init(){ 48 head = 1; tail = 0; 49 } 50 void push(const Point &u){ 51 while (head < tail && Cross(q[tail]-q[tail-1], u-q[tail-1]) >= 0 ) tail--; 52 q[++tail] = u; 53 } 54 void pop(const LL &k){ 55 while (head < tail && k*q[head].x + q[head].y >= k*q[head+1].x + q[head+1].y ) head++; 56 } 57 int n; 58 LL a[N],b[N]; 59 LL dp[N]; 60 void solve(){ 61 init(); 62 dp[1] = 0; push(Point(b[1],0)); 63 for (int i = 2; i <= n; i++) { 64 pop(a[i]); 65 dp[i] = a[i] * q[head].x + q[head].y; 66 push(Point(b[i],dp[i])); 67 } 68 printf("%I64d ",dp[n]); 69 } 70 int main(){ 71 freopen("in.txt","r",stdin); 72 while (~scanf("%d",&n)){ 73 for (int i = 1; i <= n; i++) { 74 scanf("%I64d",a+i); 75 } 76 for (int i = 1; i <=n; i++) { 77 scanf("%I64d",b+i); 78 } 79 solve(); 80 81 82 } 83 return 0; 84 }
cf311 B
http://codeforces.com/contest/311/problem/B
1 /* 2 题意:有直线上n个地点,m只cat,p个喂养人,cat会在ti到达hi,喂养人从地点1 3 任意时间出发,如果碰到已经到达的CAT就照顾,问怎么安排喂养人 4 使所有CAT被照顾到且,cat等待的时间最少; 5 6 sum_di[i]表示 地点i到地点1的距离,那么 val[j] = ti[j] - sum_di[hi[j]就表示对cat j 7 喂养人最早的出发时间; 8 sort(val); 那么题意就是讲val[]至多分成p段,每段的花费为: 9 设该段为[i,j],w = val[j]*(j-i+1)- (sum[j] - sum[j-1]); 10 11 设DP[j][i]表示 前i个值分成j段的最小花费 12 方程:DP[j][i] = DP[j-1][k] + val[i]*(i-k) - (sum[i]-sum[k]); 13 很明显可以化成斜率的DP的模式; 14 x[k] = k; 15 y[k] = sum[k] + dp[k]; 16 G = -a[i]*x[k] + y[k]; 17 18 trick :人出发的时间可以是负的, 19 */ 20 #include<cstdio> 21 #include<cstring> 22 #include<iostream> 23 #include<cstdlib> 24 #include<cmath> 25 #include<algorithm> 26 using namespace std; 27 const int N=100000+10; 28 typedef long long LL; 29 struct Point{ 30 LL x,y; 31 Point (LL a=0,LL b=0):x(a),y(b){} 32 Point operator - (const Point &p)const{ 33 return Point (x-p.x, y-p.y); 34 } 35 }; 36 LL Cross(const Point &u,const Point &v){ 37 return u.x*v.y - u.y*v.x; 38 } 39 40 Point q[N]; 41 int head,tail; 42 void init(){ 43 head = 1; tail = 0; 44 } 45 void push(const Point &u){ 46 while (head < tail && Cross(q[tail]-q[tail-1],u-q[tail-1]) <= 0) tail--; 47 q[++tail] = u; 48 } 49 void pop(const LL &k){ 50 while (head < tail && k*q[head].x + q[head].y >= k*q[head+1].x+q[head+1].y) head++; 51 } 52 int n,m,p; 53 LL di[N],sum_di[N]; 54 LL sum[N],hi[N],ti[N],val[N]; 55 void init_val(){ 56 for (int i = 1; i<=m ;i++){ 57 val[i] = ti[i] - sum_di[hi[i]]; 58 } 59 sort(val+1,val+m+1); 60 sum[0] = 0; 61 for (int i = 1; i<=m; i++) { 62 sum[i] = sum[i-1] + val[i]; 63 } 64 /* for (int i =1; i<=m; i++) { 65 cout << val[i] << " "; 66 }cout<<endl; 67 */ 68 } 69 LL dp[110][N]; 70 void solve(){ 71 init_val(); 72 for (int i = 1; i <= m; i++) { 73 dp[1][i] = val[i]*i - sum[i]; 74 } 75 LL ret = dp[1][m]; 76 for (int j = 2; j<=p; j++) { 77 init(); 78 for (int i = 1; i <= m; i++) { 79 pop(-val[i]); 80 dp[j][i] = -val[i]*q[head].x + q[head].y - sum[i] + val[i]*i; 81 push(Point(i,dp[j-1][i] + sum[i])); 82 83 } 84 if (dp[j][m] < ret) ret = dp[j][m]; 85 } 86 printf("%I64d ",ret); 87 } 88 int main(){ 89 freopen("in.txt","r",stdin); 90 while (~scanf("%d%d%d",&n,&m,&p)){ 91 for (int i = 2; i <= n ;i++) scanf("%I64d",di+i); 92 sum_di[0] = sum_di[1] = 0; 93 for (int i = 2; i <= n; i++) sum_di[i] = sum_di[i-1] + di[i]; 94 for (int i= 1; i <= m; i++) scanf("%I64d%I64d",hi+i,ti+i); 95 solve(); 96 } 97 return 0; 98 }
hdu 3669
1 /* 2 题意:n个A矩形,至多在墙上挖M个B矩形,每个B矩形的花费是矩形的面积,且每个B矩形不能重叠, 3 使所有A矩形都能通过,(A矩形不能旋转),问最小的花费; 4 5 按照wi从大到小,如果wi相等,则按hi从大到小排,这样对于wi相同的矩形,只要hi最高的能通过,其他 6 的肯定能通过,这样可以预处理出必要的矩形; 7 8 这样问题就变成,给你wi递减,hi递增的矩形序列,至多分成M段,没段的花费为 9 w[i,j] = mat[i].wi*mat[j].hi; 10 11 设DP[j][i]表示将前i个矩形划分成j段的最小花费; 12 DP[j][i] = DP[j-1][k] + w[k,i]; 13 14 很标准的斜率DP; 15 16 注意: 常数很大,写在结构体里就T了,还有就是能不用LL的就不要用LL, 17 用LL的常数也很大, 18 还有就是一个可以”优化“的,就是if dp[j][n] > ret then break; 标记为“>.<”的那行; 19 但是不知道是不是对的 20 */ 21 #include<cstdio> 22 #include<cstring> 23 #include<cstdlib> 24 #include<iostream> 25 #include<algorithm> 26 #include<cmath> 27 #include<vector> 28 #include<set> 29 using namespace std; 30 const int N=50000+10; 31 typedef long long LL; 32 struct Point{ 33 int x; 34 LL y; 35 Point (int a=0,LL b=0):x(a),y(b){} 36 Point operator - (const Point &p) const{ 37 return Point(x-p.x,y-p.y); 38 } 39 }; 40 typedef Point Vector; 41 inline LL Cross(const Vector &u,const Vector &v){ 42 return (LL)u.x*v.y - (LL)u.y*v.x; 43 } 44 struct rec{ 45 int w,h; 46 bool operator < (const rec &p)const{ 47 return w>p.w || (w==p.w && h>p.h); 48 } 49 }mat[N]; 50 int n,M; 51 Point q[N]; 52 int head,tail; 53 /* 54 struct dequeue{ 55 Point q[N]; 56 int head,tail; 57 void init(){ 58 head = 1; tail = 0; 59 } 60 void push(const Point &u){ 61 while (head < tail && Cross(q[tail]-q[tail-1],u-q[tail-1]) >= 0 ) tail--; 62 q[++tail] = u; 63 } 64 Point pop(const LL &k){ 65 while (head < tail && k*q[head].x + q[head].y >= k*q[head+1].x + q[head+1].y ) head++; 66 return q[head]; 67 } 68 }H; 69 */ 70 LL dp[2][N]; 71 void solve(){ 72 73 sort(mat+1,mat+n+1); 74 int tn=1; 75 for (int i=2;i<=n;i++){ 76 if (mat[tn].w!=mat[i].w && mat[tn].h < mat[i].h) mat[++tn] = mat[i]; 77 } 78 n = tn; 79 80 LL ret = -1; 81 int pos=0; 82 dp[pos][0] = 0; 83 for (int i=1;i<=n;i++){ 84 dp[pos][i]=(LL)mat[1].w*mat[i].h; 85 } 86 ret = dp[pos][n]; 87 for (int j=2;j<=M;j++){ 88 head = 1; tail = 0; 89 for (int i=1;i<=n;i++){ 90 Point u=Point(mat[i].w,dp[pos][i-1]); 91 while (head < tail && Cross(q[tail]-q[tail-1],u-q[tail-1]) >= 0 ) tail--; 92 q[++tail] = u; 93 while (head < tail && (LL)q[head].x*mat[i].h + q[head].y >= (LL)q[head+1].x*mat[i].h + q[head+1].y ) 94 head++; 95 96 dp[pos^1][i] = (LL)q[head].x*mat[i].h + q[head].y; 97 } 98 99 pos ^= 1; dp[pos][0] = 0; 100 if (dp[pos][n] < ret) ret = dp[pos][n]; 101 //else break; >.< 102 } 103 printf("%I64d ",ret); 104 } 105 int main(){ 106 //freopen("in.txt","r",stdin); 107 while (~scanf("%d%d",&n,&M)){ 108 for (int i=1;i<=n;i++){ 109 scanf("%d%d",&mat[i].w,&mat[i].h); 110 } 111 solve(); 112 } 113 return 0; 114 }
hdu 3725
1 /* 2 题意:happy Farm,偷菜,且只能按照价值从大到小开始偷(一般斜率DP都是这样,有一定的顺序,然后就是分段了) 3 每个蔬菜有两个值ai,di,可以刷新M次,每次刷新后DOG的anger值变成0; 4 5 抽象一下:给你一个序列,至多分成M段,每段的花费是w[i,j]; 6 在花费小于ti的情况下,使每段sum_di的最大值最小; 7 8 w[i+1,j] = a[i+1]*1 + a[i+2]*2 + ... + a[j]*(j-i+1); 9 10 最大值最小,很容易让人想到二分最大值m,然后判断是否满足; 11 12 现在问题变成:每段sum_di的值不超过m,问是否存在方案使得花费小于ti; 13 14 Ti[i] = a[1]*1 + a[2]*2 + ... + a[i]*i; 15 sum[i] = a[1] + a[2] + ... + a[i]; 16 w[i+1,j] = Ti[j] - Ti[i] - sum[i]*(j-i); 17 18 dp[j][i]表前i个蔬菜,分成j段,每段sum_di满足要求下的最小花费; 19 dp[j[i] = dp[j-1][k] + w[k,i]; 20 21 显然也是一个斜率DP模型; 22 23 因为每段加了一个sum_di不能超过m的要求,所以在POP时还要POP掉不能满足条件的点 24 这就有可能H.q[]里一个点也没有,anger[i]本身大于m,所以我们在操作时要判断一下, 25 同样在PUSH时也是,不需要把那些不满足的点push进去; 26 27 初始化,和队列的边界问题我想是写斜率DP的唯一要注意一下的地方; 28 29 */ 30 #include<cstdio> 31 #include<cstring> 32 #include<iostream> 33 #include<cstdlib> 34 #include<algorithm> 35 #include<cmath> 36 #include<vector> 37 #include<string> 38 using namespace std; 39 const int N=30000+10; 40 typedef long long LL; 41 struct Point{ 42 LL x,y; 43 Point (LL a=0,LL b=0):x(a),y(b){} 44 Point operator - (const Point &p)const{ 45 return Point(x - p.x, y - p.y); 46 } 47 }; 48 LL sum[N],Ti[N],ti; 49 int n,M,r,anger[N]; 50 typedef Point Vector; 51 LL Cross(const Vector &u,const Vector &v){ 52 return u.x*v.y - u.y*v.x; 53 } 54 struct dequeue{ 55 Point q[N]; 56 int head,tail; 57 void init(){ 58 head = 1; tail = 0; 59 } 60 void push(const Point &u){ 61 while (head < tail && Cross(q[tail] - q[tail-1],u - q[tail-1]) <= 0) 62 tail--; 63 q[++tail] = u; 64 } 65 void pop(int k,int i,int w){ 66 while (head <= tail && anger[i] - anger[q[head].x] > w) head++; 67 while (head < tail && -k*q[head].x + q[head].y >= -k*q[head+1].x + q[head+1].y) head++; 68 69 } 70 }H; 71 72 struct vegetable{ 73 int vi,ai; 74 LL di; 75 vegetable(int v=0,int a=0,LL d=0):vi(v),ai(a),di(d){} 76 bool operator < (const vegetable &p)const{ 77 return vi>p.vi; 78 } 79 void input(){ 80 scanf("%d%d%I64d",&vi,&ai,&di); 81 } 82 void output(){ 83 cout<< vi <<" "<< ai <<" "<< di << endl; 84 } 85 86 }vg[N]; 87 88 void init(){ 89 sort(vg+1,vg+n+1); 90 anger[0] = sum[0] = Ti[0] = 0; 91 for (int i=1;i<=n;i++) { 92 sum[i]=sum[i-1]+vg[i].di; 93 Ti[i]=Ti[i-1]+i*vg[i].di; 94 anger[i] = anger[i-1] + vg[i].ai; 95 } 96 /* 97 for (int i=0;i<=n;i++) cout<<sum[i]<<" ";cout<<endl; 98 for (int i=0;i<=n;i++) cout<<Ti[i]<<" ";cout<<endl; 99 for (int i=0;i<=n;i++) cout<<anger[i]<<" ";cout<<endl; 100 */ 101 } 102 LL dp[11][N]; 103 int check(int m){ 104 for (int i = 0; i <= M; i++){ 105 for (int j = 0; j <= n; j++) dp[i][j] = -1; 106 } 107 for (int i=0;i<=n;i++){ 108 if (anger[i] <= m) dp[0][i]=Ti[i]; 109 else break; 110 } 111 for (int j=1;j<=M;j++){ 112 113 H.init(); 114 H.push(Point(0,(j-1)*r)); 115 116 for (int i=1;i<=n;i++){ 117 H.pop(sum[i],i,m); 118 if (H.head<=H.tail) 119 dp[j][i] = -sum[i]*H.q[H.head].x + H.q[H.head].y + Ti[i] + r; 120 //cout<< t.x << " " << t.y << " *** " <<dp[j][i]<< endl; 121 if (dp[j-1][i] != -1) H.push(Point(i,sum[i]*i + dp[j-1][i] - Ti[i])); 122 123 } 124 } 125 LL ret = dp[0][n]; 126 for (int i=1; i<=M;i++){ 127 if(dp[i][n] < ret || ret == -1) ret = dp[i][n]; 128 } 129 if (ret > ti || ret == -1) return 0; 130 return 1; 131 } 132 void solve(int l,int r){ 133 init(); 134 int ret=-1; 135 while (r>=l){ 136 int m=(l+r)>>1; 137 if (check(m)){ 138 ret=m; r=m-1; 139 }else l=m+1; 140 } 141 if (ret == -1) printf("I have no idea "); 142 else printf("%d ",ret); 143 } 144 int main(){ 145 146 freopen("in.txt","r",stdin); 147 int T; scanf("%d",&T); 148 while (T--){ 149 scanf("%d%d%d%I64d",&n,&M,&r,&ti); 150 int allai = 0; 151 for (int i=1;i<=n;i++){ 152 vg[i].input(); 153 allai += vg[i].ai; 154 } 155 solve(1,allai); 156 } 157 return 0; 158 }