题意
给定一些整数,都在 ([1, 4]) 以内,每次操作可以把一个整数拆成两个 ([1, 3]) 内的整数,或删掉 (n in [1, 4]) 个 (n),不能操作输,则问先手是否必胜。
(a, b, c, d le 10^{10000})
思路
这是一道找规律题。
可以对所有状态进行分类,记 (u = (a + c) mod 2, v = (b + d) mod 3)
则 (u = v) 必胜,证明需要对 (8) 种转移进行讨论,发现所有转移必定使 (u = v) 的转移到 (u e v),而 (u e v) 的必定可以通过一种转移转移到 (u = v)。
Code
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
using namespace std;
#define File(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout)
typedef long long ll;
namespace io {
const int SIZE = (1 << 21) + 1;
char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
char getc () {return gc();}
inline void flush () {fwrite (obuf, 1, oS - obuf, stdout); oS = obuf;}
inline void putc (char x) {*oS ++ = x; if (oS == oT) flush ();}
template <class I> inline void gi (I &x) {for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;}
template <class I> inline void print (I x) {if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;while (x) qu[++ qr] = x % 10 + '0', x /= 10;while (qr) putc (qu[qr --]);}
struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
int rdm2(){
unsigned char s = 0;
char ch;
while(isspace(ch = gc()));
do s = s * 10 + (ch - '0'); while(isdigit(ch = gc()));
return s & 3;
}
int rdm3(){
int s = 0;
char ch;
while(isspace(ch = gc()));
do s = (s * 10 + (ch - '0')) % 3; while(isdigit(ch = gc()));
return s;
}
}
using io :: rdm3; using io :: print; using io :: rdm2; using io :: gi;
template<class T> void upmax(T &x, T y){x = x>y ? x : y;}
template<class T> void upmin(T &x, T y){x = x<y ? x : y;}
int main(){
int T;
gi(T);
while(T--){
int s = 0, t = 0;
s += rdm2(); t += rdm3(); s += rdm2(); t += rdm3();
if(s % 2 == t % 3) puts("0");
else puts("1");
}
return 0;
}