• HDU5001 Walk(概率DP)


    A - Walk
    Time Limit:15000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling. 

    The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times. 

    If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
     

    Input

    The first line contains an integer T, denoting the number of the test cases. 

    For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node a and node b. 

    T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
     

    Output

    For each test cases, output n lines, the i-th line containing the desired probability for the i-th node. 

    Your answer will be accepted if its absolute error doesn't exceed 1e-5.
     

    Sample Input

    2 5 10 100 1 2 2 3 3 4 4 5 1 5 2 4 3 5 2 5 1 4 1 3 10 10 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 4 9
     

    Sample Output

    0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6993317967 0.5864284952 0.4440860821 0.2275896991 0.4294074591 0.4851048742 0.4896018842 0.4525044250 0.3406567483 0.6421630037
    //给一个无向图 , n个节点,m条边
    //每个节点为起点的概率相同 
    //问每个节点走d步后不经过这个节点的概率
    //不经过这个节点的概率等于去掉该节点的图中走了d步到其他节点的和
    //dp[i][j] 为走了i步到达j个节点的概率
    //dp[i][j] = segma(dp[i-1][v])/vec[j].size()
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<vector>
    using namespace std ;
    const int maxm = 10010 ;
    const int maxn = 60 ;
    double dp[maxm][maxn] ;
    double outdegree[maxn] ;
    double p[maxn] ;
    vector<int>vec[maxn] ;
    int main()
    {
       // freopen("in.txt" ,"r" , stdin) ;
        int T ;
        int m , n, d ;
        scanf("%d" ,&T) ;
        while(T--)
        {
            scanf("%d%d%d" ,&n , &m , &d) ;
            memset(p , 0 , sizeof(p)) ;
            for(int i = 1;i <= n;i++)
            vec[i].clear() ;
            for(int i = 1;i <= m;i++)
            {
                int a , b ;
                scanf("%d%d" ,&a ,&b) ;
                vec[a].push_back(b) ;
                vec[b].push_back(a) ;
            }
            for(int s = 1;s <= n;s++)
            {
                memset(dp , 0 , sizeof(dp)) ;
                for(int i = 1;i <= n;i++)
                dp[0][i] = 1.0/(double)n ;
                double ans = 0 ;
                for(int i = 1;i <= d;i++)
                for(int j = 1;j <= n;j++)
                {
                    if(j == s)continue ;
                    for(int k = 0;k < vec[j].size() ;k++)
                    {
                        int v = vec[j][k] ;
                        if(v == s)continue ;
                        dp[i][j] += dp[i-1][v]/(double)vec[j].size();
                    }
                }
                dp[0][s] = 1.0/(double)n ;
                for(int j = 1;j <= n;j++)
                p[s] += dp[d][j] ;
            }
            for(int i = 1;i <= n;i++)
            printf("%lf
    " , p[i]) ;
        }
        return 0 ;
    }
  • 相关阅读:
    wordpress取文章时间
    一个链接引发的血案---------服务器 IO及网络流量暴涨解决历程
    wordpres 自定义comment样式
    HTML中head里的内容经浏览器解析后全到body里了
    mir9-lua——《热血沙城》45度ARPG手游-Lua移植版
    MoonWarriors-lua——《雷电战机》游戏-Lua移植版
    《QQ欢乐斗地主》山寨版
    最好的ie版本检测方式
    css 超出部分显示省略号
    分享一个jquery插件,弥补一下hover事件的小小不足
  • 原文地址:https://www.cnblogs.com/Ritchie/p/5460883.html
Copyright © 2020-2023  润新知