Description
Vance and Shackler like playing games. One day, they are playing a game called "arcane numbers". The game is pretty simple, Vance writes down a finite decimal under base A, and then Shackler translates it under base B. If Shackler can translate it into a finite decimal, he wins, else it will be Vance’s win. Now given A and B, please help Vance to determine whether he will win or not. Note that they are playing this game using a mystery language so that A and B may be up to 10^12.
Input
The first line contains a single integer T, the number of test cases.
For each case, there’s a single line contains A and B.
For each case, there’s a single line contains A and B.
Output
For each case, output “NO” if Vance will win the game. Otherwise, print “YES”. See Sample Output for more details.
Sample Input
3
5 5
2 3
1000 2000
Sample Output
Case #1: YES
Case #2: NO
Case #3: YES
对于A进制的一个数,先将其左移N位使得其成为一个整数,然后再将这个整数化为B进制的一个数,
然后我们只需要考虑这个数是否能够整除A^N即可(因为我们前面左移了N位),我可以将B进制的
这个数先进行左移无限位,那么当有A^N 整除 B^INF 时我们就可以将这个除尽,然后我们再将B
右移INF位便可以了。
这里就把问题转化为了A^N能够整除B^INF进制了,进一步我们可以得到B包含所有A的质因子便为判定条件了。
#include <iostream> #include <math.h> #include <string.h> #include <algorithm> #include <stdio.h> #include <stdlib.h> const int maxn=1000100; bool isprime[maxn]; int prime[maxn]; using namespace std; int i,j,k=0; void pr() { for(i=2;i<=maxn;i++) { if(!isprime[i]) { for(j=i+i;j<=maxn;j=j+i) isprime[j]=true; prime[k++]=i; } } } int main() { pr(); int t,c=1; bool flag=true; long long a,b; scanf("%d",&t); while(t--) { scanf("%lld%lld",&a,&b); flag=true; for(i=0;i<k&&prime[i]<=a;i++) { if(a%prime[i]==0) { if(b%prime[i]!=0) { flag=false; break; } } while(a%prime[i]==0) a/=prime[i]; } if(b%a!=0) flag=false; if(flag) cout<<"Case #"<<c++<<": YES"<<endl; else cout<<"Case #"<<c++<<": NO"<<endl; } return 0; }