• HDU1712周期


    ACboy needs your help

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5963    Accepted Submission(s): 3250


    Problem Description
    ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?
     
    Input
    The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
    Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
    N = 0 and M = 0 ends the input.
     
    Output
    For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
     
    Sample Input
    2 2 1 2 1 3 2 2 2 1 2 1 2 3 3 2 1 3 2 1 0 0
     
    Sample Output
    3 4 6
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  2159 1561 2602 3033 2955 

    对于两个最简的分数 a / b, c / d 把他们两个的最小公倍数 x / y 也设为一个分数形式,那么这个 x 一定能够被 a , c整除, y 一定能够整除 b , d。那么要求得最小公倍数,那么肯定是分子尽量小,即 a , c 的最小公倍数, 分母尽量大, 即 b , d 的最大公约数。

    #include <iostream>
    #include <algorithm>
    #include <stdlib.h>
    #include <stdio.h>
    #include <math.h>
    #include <string.h>
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b)
    {
        if (b==0) return a;
        else return gcd(b,a%b);
    }
    ll lcm(ll a,ll b)
    {
        return a/gcd(a,b)*b;
    }
    int main()
    {
        ll i,j,t,fz1,fz2,fm1,fm2,fz,fm,len1,len2,len3,len4,tmp;
        char c;
        cin>>t;
        while (t--)
        {
            cin>>fz1>>c>>fm1;
            cin>>fz2>>c>>fm2;
            tmp=gcd(fz1,fm1);
            fz1/=tmp;
            fm1/=tmp;
            tmp=gcd(fz2,fm2);
            fz2/=tmp;
            fm2/=tmp;
            //cout<<tmp<<" "<<fz2<<" "<<fm2<<endl;
            //fm=gcd(fm1,fm2); 题目给的分数不是最简!!!!
            //fz=lcm(fz1,fz2);fz是俩分子的最小公倍数 后化简的话 fm已经变成两个数的最大公约数了 没法被用作化简了
            //cout<<gcd(fz,fm)<<"aaaaaaaaa"<<endl;
            //fz/=gcd(fz,fm);
            //fm/=gcd(fz,fm);//用abcd fz1,fz2写成fz1,fm1了
            if (gcd(fm1,fm2)==1)
            cout<<lcm(fz1,fz2)<<endl;
            else
            cout<<lcm(fz1,fz2)<<"/"<<gcd(fm1,fm2)<<endl;
        }
    
    
    
        return 0;
    }

    //很久之前做的很烦的一道题。

  • 相关阅读:
    Python中的iterable该怎么理解?
    python中request中的params,data,json参数含义全解
    pycharm中查看变量值的方法汇总
    java多綫程
    spring boot 注解
    在Windows环境中使用Nginx, Consul, Consul Template搭建负载均衡和服务发现服务
    linux系统之四 常用工具
    linux系统之一 全连接与半连接队列
    linux系列之三 tcp缓冲区
    linux系统之二 文件句柄数
  • 原文地址:https://www.cnblogs.com/Ritchie/p/5425346.html
Copyright © 2020-2023  润新知