glusterfs中的内存管理方式:
首先来看看glusterfs的内存管理结构吧:
1 struct mem_pool { 2 struct list_head list; 3 int hot_count; 4 int cold_count; 5 gf_lock_t lock; 6 unsigned long padded_sizeof_type; 7 void *pool; 8 void *pool_end; 9 int real_sizeof_type; 10 uint64_t alloc_count; 11 uint64_t pool_misses; 12 int max_alloc; 13 int curr_stdalloc; 14 int max_stdalloc; 15 char *name; 16 struct list_head global_list; 17 };
管理结构的信息量很简单,核心的数据项是list,每个要分配的内存块被一个双向链表串连起来管理。
接下来是创建内存池的接口:
1 struct mem_pool * 2 mem_pool_new_fn (unsigned long sizeof_type, 3 unsigned long count, char *name) 4 { 5 struct mem_pool *mem_pool = NULL; 6 unsigned long padded_sizeof_type = 0; 7 void *pool = NULL; 8 int i = 0; 9 int ret = 0; 10 struct list_head *list = NULL; 11 glusterfs_ctx_t *ctx = NULL; 12 13 if (!sizeof_type || !count) { 14 gf_log_callingfn ("mem-pool", GF_LOG_ERROR, "invalid argument"); 15 return NULL; 16 } 17 padded_sizeof_type = sizeof_type + GF_MEM_POOL_PAD_BOUNDARY; 18 19 mem_pool = GF_CALLOC (sizeof (*mem_pool), 1, gf_common_mt_mem_pool); 20 if (!mem_pool) 21 return NULL; 22 23 ret = gf_asprintf (&mem_pool->name, "%s:%s", THIS->name, name); 24 if (ret < 0) 25 return NULL; 26 27 if (!mem_pool->name) { 28 GF_FREE (mem_pool); 29 return NULL; 30 } 31 32 LOCK_INIT (&mem_pool->lock); 33 INIT_LIST_HEAD (&mem_pool->list); 34 INIT_LIST_HEAD (&mem_pool->global_list); 35 36 mem_pool->padded_sizeof_type = padded_sizeof_type; 37 mem_pool->cold_count = count; 38 mem_pool->real_sizeof_type = sizeof_type; 39 40 pool = GF_CALLOC (count, padded_sizeof_type, gf_common_mt_long); 41 if (!pool) { 42 GF_FREE (mem_pool->name); 43 GF_FREE (mem_pool); 44 return NULL; 45 } 46 47 for (i = 0; i < count; i++) { 48 list = pool + (i * (padded_sizeof_type)); 49 INIT_LIST_HEAD (list); 50 list_add_tail (list, &mem_pool->list); 51 } 52 53 mem_pool->pool = pool; 54 mem_pool->pool_end = pool + (count * (padded_sizeof_type)); 55 56 /* add this pool to the global list */ 57 ctx = THIS->ctx; 58 if (!ctx) 59 goto out; 60 61 list_add (&mem_pool->global_list, &ctx->mempool_list); 62 63 out: 64 return mem_pool; 65 }
在第19行中申请了一个mem_pool内存管理结构,在初始化这个结构体后,40行申请了真正要使用的内存pool并把用mem_pool->list链表串起来。之后再记录内存池的开始和结束地址(53-54),再把这个结构加入全局管理。
再看一下申请后的内存是如何使用的呢?
1 void * 2 mem_get (struct mem_pool *mem_pool) 3 { 4 struct list_head *list = NULL; 5 void *ptr = NULL; 6 int *in_use = NULL; 7 struct mem_pool **pool_ptr = NULL; 8 9 if (!mem_pool) { 10 gf_log_callingfn ("mem-pool", GF_LOG_ERROR, "invalid argument"); 11 return NULL; 12 } 13 14 LOCK (&mem_pool->lock); 15 { 16 mem_pool->alloc_count++; 17 if (mem_pool->cold_count) { 18 list = mem_pool->list.next; 19 list_del (list); 20 21 mem_pool->hot_count++; 22 mem_pool->cold_count--; 23 24 if (mem_pool->max_alloc < mem_pool->hot_count) 25 mem_pool->max_alloc = mem_pool->hot_count; 26 27 ptr = list; 28 in_use = (ptr + GF_MEM_POOL_LIST_BOUNDARY + 29 GF_MEM_POOL_PTR); 30 *in_use = 1; 31 32 goto fwd_addr_out; 33 } 34 35 /* This is a problem area. If we've run out of 36 * chunks in our slab above, we need to allocate 37 * enough memory to service this request. 38 * The problem is, these individual chunks will fail 39 * the first address range check in __is_member. Now, since 40 * we're not allocating a full second slab, we wont have 41 * enough info perform the range check in __is_member. 42 * 43 * I am working around this by performing a regular allocation 44 * , just the way the caller would've done when not using the 45 * mem-pool. That also means, we're not padding the size with 46 * the list_head structure because, this will not be added to 47 * the list of chunks that belong to the mem-pool allocated 48 * initially. 49 * 50 * This is the best we can do without adding functionality for 51 * managing multiple slabs. That does not interest us at present 52 * because it is too much work knowing that a better slab 53 * allocator is coming RSN. 54 */ 55 mem_pool->pool_misses++; 56 mem_pool->curr_stdalloc++; 57 if (mem_pool->max_stdalloc < mem_pool->curr_stdalloc) 58 mem_pool->max_stdalloc = mem_pool->curr_stdalloc; 59 ptr = GF_CALLOC (1, mem_pool->padded_sizeof_type, 60 gf_common_mt_mem_pool); 61 gf_log_callingfn ("mem-pool", GF_LOG_DEBUG, "Mem pool is full. " 62 "Callocing mem"); 63 64 /* Memory coming from the heap need not be transformed from a 65 * chunkhead to a usable pointer since it is not coming from 66 * the pool. 67 */ 68 } 69 fwd_addr_out: 70 pool_ptr = mem_pool_from_ptr (ptr); 71 *pool_ptr = (struct mem_pool *)mem_pool; //保存分配者地址 72 ptr = mem_pool_chunkhead2ptr (ptr); 73 UNLOCK (&mem_pool->lock); 74 75 return ptr; 76 }
从17行到33行可以看出,当需要内存时,glusterfs从mem_pool->list中分配内存。关键是:当内存不足时,mem_pool如何处理呢?55-63行处理这个问题:当内存不足时,它向系统申请了内存,并处理了内存的管理信息后,直接将内存返回给调用者。
最后看看内存的释放过程:
1 void 2 mem_put (void *ptr) 3 { 4 struct list_head *list = NULL; 5 int *in_use = NULL; 6 void *head = NULL; 7 struct mem_pool **tmp = NULL; 8 struct mem_pool *pool = NULL; 9 10 if (!ptr) { 11 gf_log_callingfn ("mem-pool", GF_LOG_ERROR, "invalid argument"); 12 return; 13 } 14 15 list = head = mem_pool_ptr2chunkhead (ptr); 16 tmp = mem_pool_from_ptr (head); //取出分配者地址 17 if (!tmp) { 18 gf_log_callingfn ("mem-pool", GF_LOG_ERROR, 19 "ptr header is corrupted"); 20 return; 21 } 22 23 pool = *tmp; 24 if (!pool) { 25 gf_log_callingfn ("mem-pool", GF_LOG_ERROR, 26 "mem-pool ptr is NULL"); 27 return; 28 } 29 LOCK (&pool->lock); 30 { 31 32 switch (__is_member (pool, ptr)) 33 { 34 case 1: 35 in_use = (head + GF_MEM_POOL_LIST_BOUNDARY + 36 GF_MEM_POOL_PTR); 37 if (!is_mem_chunk_in_use(in_use)) { 38 gf_log_callingfn ("mem-pool", GF_LOG_CRITICAL, 39 "mem_put called on freed ptr %p of mem " 40 "pool %p", ptr, pool); 41 break; 42 } 43 pool->hot_count--; 44 pool->cold_count++; 45 *in_use = 0; 46 list_add (list, &pool->list); 47 break; 48 case -1: 49 /* For some reason, the address given is within 50 * the address range of the mem-pool but does not align 51 * with the expected start of a chunk that includes 52 * the list headers also. Sounds like a problem in 53 * layers of clouds up above us. ;) 54 */ 55 abort (); 56 break; 57 case 0: 58 /* The address is outside the range of the mem-pool. We 59 * assume here that this address was allocated at a 60 * point when the mem-pool was out of chunks in mem_get 61 * or the programmer has made a mistake by calling the 62 * wrong de-allocation interface. We do 63 * not have enough info to distinguish between the two 64 * situations. 65 */ 66 pool->curr_stdalloc--; 67 GF_FREE (list); 68 break; 69 default: 70 /* log error */ 71 break; 72 } 73 } 74 UNLOCK (&pool->lock); 75 }
在switch语句中,在case 1中处理了内存池分配的过程。在case 0中处理内存不足的情况,从这里看出,glusterfs直接将内存释放了,正好与分配的过程完美的结合。