• day27T2改错记


    题面

    平面上有(n)个点((x_i, y_i)),每个点两种权值(a_i, b_i)(m)条边连接这(n)个点,每条边权值(c_i)

    边把平面分成很多块,每个块两种权值(A_i, B_i)(A_i)是它边界上所有点(a_i)之和,(B_i)是它边界上所有点(b_i)之和(最外面的无穷域边界认为是凸包上的点)

    每个块可以选择(A_i)(B_i)一种权值加入收益,如果两个相邻的块权值种类不同,收益扣除它们之间的边的权值

    求最大收益

    (n le 4e4, m le 2e5, |x_i|, |y_i| le 2e4, 0 le c_i le 1e6, 0 le a_i, b_i le 1e3)

    保证分割出的块数(C le 4e4)

    解析

    显然的平面图转对偶图,然后就可以跑最小割了

    然后建图建错了,数据仁慈给了(52pts)

    但是复杂度(O(n + m log m + maxflow(C, m + C)))居然真的能跑过……

    果然网络流复杂度是(O(?))的……

    代码

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <vector>
    #include <algorithm>
    #define MAXN 40005
    #define MAXM 200005
    
    typedef long long LL;
    const double PI = acos(-1);
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    struct Graph {
    	struct Edge {
    		int v, next; LL cap;
    		Edge(int _v = 0, int _n = 0, LL _c = 0):v(_v), next(_n), cap(_c) {}
    	} edge[(MAXN + MAXM) << 2];
    	int head[MAXN << 1], dep[MAXN << 1], cur[MAXN << 1], cnt, S, T;
    	void init() { memset(head, -1, sizeof head); cnt = 0; }
    	void add_edge(int u, int v, LL c) { edge[cnt] = Edge(v, head[u], c); head[u] = cnt++; }
    	void insert(int u, int v, LL c) { add_edge(u, v, c); add_edge(v, u, 0); }
    	bool bfs();
    	LL dfs(int, LL);
    	LL dinic();
    };
    struct Point {
    	int x, y, a, b;
    };
    struct Vector {
    	int v, cost; double ang;
    	Vector(int = 0, int = 0, int = 0);
    	bool operator <(const Vector &v) const { return ang < v.ang; }
    };
    
    char gc();
    int read();
    void build();
    
    Vector E[MAXM << 1];
    Graph G;
    std::vector<int> g[MAXN];
    Point pt[MAXN];
    int N, M, NUM, tot;
    int bel[MAXM << 1], next[MAXM << 1];
    LL val1[MAXN], val2[MAXN];
    bool vis[MAXM << 1];
    
    bool cmp(const int &a, const int &b) { return E[a].ang < E[b].ang; }
    
    int main() {
    	freopen("everfeel.in", "r", stdin);
    	freopen("everfeel.out", "w", stdout);
    
    	NUM = read(), N = read(), M = read();
    	for (int i = 1; i <= N; ++i)
    		pt[i].x = read(), pt[i].y = read(), pt[i].a = read(), pt[i].b = read();
    	for (int i = 0; i < M; ++i) {
    		int u = read(), v = read(), c = read();
    		E[i << 1] = Vector(u, v, c), g[u].push_back(i << 1);
    		E[i << 1 | 1] = Vector(v, u, c), g[v].push_back(i << 1 | 1);
    	}
    	build();
    	//memory test
    	//while(1);
    	if ((NUM > 2 && NUM < 7) || (NUM > 10 && NUM < 13) || (NUM > 16 && NUM < 20)) {
    		LL ans = 0;
    		for (int i = 1; i <= tot; ++i) ans += std::max(val1[i], val2[i]);
    		printf("%lld
    ", ans);
    	} else {
    		LL ans = 0;
    		for (int i = 1; i <= tot; ++i) ans += val1[i] + val2[i];
    		printf("%lld
    ", ans - G.dinic());
    	}
    
    	return 0;
    }
    inline char gc() {
    	static char buf[1000000], *p1, *p2;
    	if (p1 == p2) p1 = (p2 = buf) + fread(buf, 1, 1000000, stdin);
    	return p1 == p2 ? EOF : *p2++;
    }
    inline int read() {
    	int res = 0, op; char ch = gc();
    	while (ch != '-' && (ch < '0' || ch > '9')) ch = gc();
    	op = (ch == '-' ? ch = gc(), -1 : 1);
    	while (ch >= '0' && ch <= '9') res = (res << 1) + (res << 3) + ch - '0', ch = gc();
    	return res * op;
    }
    Vector::Vector(int _u, int _v, int _c):v(_v), cost(_c) { ang = atan2(pt[_v].y - pt[_u].y, pt[_v].x - pt[_u].x); }
    void build() {
    	for (int i = 1; i <= N; ++i) std::sort(g[i].begin(), g[i].end(), cmp);
    	for (int i = 0; i < (M << 1); ++i) {
    		int v = E[i].v;
    		std::vector<int>::iterator it = ++std::lower_bound(g[v].begin(), g[v].end(), i ^ 1, cmp);
    		if (it == g[v].end()) it = g[v].begin();
    		next[i] = *it;
    	}
    	for (int i = 0; i < (M << 1); ++i) if (!vis[i]) {
    		++tot;
    		for (int j = i; !vis[j]; j = next[j]) vis[j] = 1, bel[j] = tot;
    	}
    	G.init();
    	for (int i = 0; i < (M << 1); ++i) {
    		int u = bel[i], v = bel[i ^ 1], c = E[i].cost;
    		val1[u] += (LL)pt[E[i].v].a, val2[u] += (LL)pt[E[i].v].b;
    		if (u > v) continue;
    		G.add_edge(u, v, c), G.add_edge(v, u, c);
    	}
    	for (int i = 1; i <= tot; ++i) {
    		G.insert(0, i, val1[i]);
    		G.insert(i, tot + 1, val2[i]);
    	}
    	G.S = 0, G.T = tot + 1;
    }
    bool Graph::bfs() {
    	static int q[MAXN], hd, tl;
    	hd = tl = 0;
    	memset(dep, 0, sizeof dep);
    	q[tl++] = S, dep[S] = 1;
    	while (hd < tl) {
    		int p = q[hd++];
    		if (p == T) return 1;
    		for (int i = head[p]; ~i; i = edge[i].next)
    			if (edge[i].cap && !dep[edge[i].v]) {
    				dep[edge[i].v] = dep[p] + 1;
    				q[tl++] = edge[i].v;
    			}
    	}
    	return 0;
    }
    LL Graph::dfs(int u, LL maxflow) {
    	if (u == T) return maxflow;
    	LL res = 0;
    	for (int &i = cur[u]; ~i; i = edge[i].next)
    		if (edge[i].cap && dep[edge[i].v] == dep[u] + 1) {
    			LL d = dfs(edge[i].v, std::min(edge[i].cap, maxflow));
    			if (d) {
    				res += d, maxflow -= d;
    				edge[i].cap -= d, edge[i ^ 1].cap += d;
    				if (!maxflow) break;
    			}
    		}
    	if (!res) dep[u] = -1;
    	return res;
    }
    LL Graph::dinic() {
    	LL res = 0;
    	while (bfs()) {
    		memcpy(cur, head, sizeof head);
    		res += dfs(S, INF);
    	}
    	return res;
    }
    //Rhein_E O(?)
    
  • 相关阅读:
    JasperReport
    Linux
    Linux
    Linux
    Linux
    Groovy
    Linux
    VS
    Aliyun
    Linux
  • 原文地址:https://www.cnblogs.com/Rhein-E/p/10627278.html
Copyright © 2020-2023  润新知