指数分布与泊松分布
一、总结
一句话总结:
泊松分布:$$P(X = k) = e^{-lambda}displaystylefrac{lambda^k}{k!}, k = 0, 1, 2,..., $$
指数分布:$$f(x) = egin{cases} lambda e^{-lambda x}, quad x > 0 \ 0, quad quad quad x leq 0 end{cases} $$
二、指数分布与泊松分布的关系(转)
转自或参考:https://www.cnblogs.com/fanlumaster/p/13766064.html
泊松分布的定义
设随机变量 X 所有可能取的值为 0 , 1, 2, ... , 且取各个值的概率为:
[P(X = k) = e^{-lambda}displaystylefrac{lambda^k}{k!}, k = 0, 1, 2,..., ]
其中,(lambda > 0) 是常数,则称 X 服从参数为 (lambda) 的泊松分布,记作 (X sim P(lambda)).
指数分布的定义
若连续型随机变量 X 的概率密度为:
[f(x) = egin{cases} lambda e^{-lambda x}, quad x > 0 \ 0, quad quad quad x leq 0 end{cases} ]
其中 (lambda > 0) 为常数,则称 X 服从参数 (lambda) 的指数分布,记为 (X sim E(lambda)).
指数分布的函数:
[F(x) = egin{cases} 1 - e^{-lambda x}, quad x > 0 \ 0, quad quad quad quad x leq 0 end{cases} ]
指数分布与泊松流的关系
在泊松流中,记时间间隔 ((0, t]) 中出现的质点数为 X
则 (X sim P(lambda t)),即有:
[P { X = k } = displaystylefrac{{(lambda t)}^k}{k!} e^{- lambda t}, k = 0,1,2,... ]
其中参数 (lambda) 称为泊松强度.
记 (T) 表示第一个质点出现的时间,则 ${ T > t } Leftrightarrow $ 在 ((0, t]) 内没有粒子到达 (P { T > t } = P { X = 0 } = e^{- lambda t}),即 (T) 的分布函数为
[F(t) = P {T leq t } = 1 - e^{- lambda t} quad (t > 0) ]
[ herefore Y sim E(lambda) ]
注:上面的泊松流指的应该(不确定)是泊松过程: