• 最大似然估计(MLE)的最大后验概率估计(MAP)区别详解


    最大似然估计(MLE)的最大后验概率估计(MAP)区别详解

    一、总结

    一句话总结:

    最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种【参数估计方法】

    1、概率和统计是一个东西吗?

    概率是已知模型和参数,推数据。统计是已知数据,推模型和参数。
    概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。 举个例子,我想研究怎么养猪(模型是猪),我选好了想养的品种、喂养方式、猪棚的设计等等(选择参数),我想知道我养出来的猪大概能有多肥,肉质怎么样(预测结果)。
    统计是,有一堆数据,要利用这堆数据去预测模型和参数。仍以猪为例。现在我买到了一堆肉,通过观察和判断,我确定这是猪肉(这就确定了模型。在实际研究中,也是通过观察数据推测模型是/像高斯分布的、指数分布的、拉普拉斯分布的等等),然后,可以进一步研究,判定这猪的品种、这是圈养猪还是跑山猪还是网易猪,等等(推测模型参数)。

    2、概率函数和似然函数P(x|Θ)?

    如果θ是已知确定的,x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点x,其出现概率是多少。
    如果x是已知确定的,θ是变量,这个函数叫做似然函数(likelihood function), 它描述对于不同的模型参数,出现x这个样本点的概率是多少。
    【一菜两吃】:这有点像“一菜两吃”的意思。其实这样的形式我们以前也不是没遇到过。例如,f(x,y)=x^y, 即x的y次方。如果x是已知确定的(例如x=2),这就是f(y)=2^y, 这是指数函数。 如果y是已知确定的(例如y=2),这就是f(x)=x^2,这是二次函数。同一个数学形式,从不同的变量角度观察,可以有不同的名字。

    二、详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解(转)

    转自:详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
    https://blog.csdn.net/u011508640/article/details/72815981


    具体大家去看这篇文章吧,这里做个总结

     
     
    我的旨在学过的东西不再忘记(主要使用艾宾浩斯遗忘曲线算法及其它智能学习复习算法)的偏公益性质的完全免费的编程视频学习网站: fanrenyi.com;有各种前端、后端、算法、大数据、人工智能等课程。
    博主25岁,前端后端算法大数据人工智能都有兴趣。
    大家有啥都可以加博主联系方式(qq404006308,微信fan404006308)互相交流。工作、生活、心境,可以互相启迪。
    聊技术,交朋友,修心境,qq404006308,微信fan404006308
    26岁,真心找女朋友,非诚勿扰,微信fan404006308,qq404006308
    人工智能群:939687837

    作者相关推荐

  • 相关阅读:
    XML案例
    4.6Java数组的遍历
    4.3Java多态(polymorphism)
    XML文档的标准
    4.6Java数组的定义
    4.6Java数组初始化的方式
    XML介绍
    4.6Java对象转型(casting)
    HelloWorld之MyBatis
    Hibernate查询方法比较
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/13894540.html
Copyright © 2020-2023  润新知