• js数组sort排序方法的算法


    js数组sort排序方法的算法

    一、总结

    一句话总结:

    ECMAScript没有定义使用哪种排序算法,各个浏览器的实现方式会有不同。火狐中使用的是归并排序,Chrome是插入排序(元素小于等于10的时候)结合快排(元素大于10的时候)。

    二、js数组sort排序方法的算法

    转自或参考:js数组sort排序方法的算法
    https://www.cnblogs.com/xiaocuncheng/p/10646735.html

    说明一下,ECMAScript没有定义使用哪种排序算法,各个浏览器的实现方式会有不同。火狐中使用的是归并排序,下面是Chrome的sort排序算法的实现。

      sort方法源码
    DEFINE_METHOD(
      GlobalArray.prototype,
      sort(comparefn) {
        CHECK_OBJECT_COERCIBLE(this, "Array.prototype.sort");
    
        if (!IS_UNDEFINED(comparefn) && !IS_CALLABLE(comparefn)) {
          throw %make_type_error(kBadSortComparisonFunction, comparefn);
        }
    
        var array = TO_OBJECT(this);
        var length = TO_LENGTH(array.length);
        return InnerArraySort(array, length, comparefn);
      }
    );
    

    这一步看出sort方法调用了InnerArraySort方法,参数是数组,数组长度,比较函数。再看看InnerArraySort方法是如何处理的。

      InnerArraySort方法源码
    function InnerArraySort(array, length, comparefn) {
      // In-place QuickSort algorithm.
      // For short (length <= 10) arrays, insertion sort is used for efficiency.
    
      if (!IS_CALLABLE(comparefn)) {
        comparefn = function (x, y) {
          if (x === y) return 0;
          if (%_IsSmi(x) && %_IsSmi(y)) {
            return %SmiLexicographicCompare(x, y);
          }
          x = TO_STRING(x);
          y = TO_STRING(y);
          if (x == y) return 0;
          else return x < y ? -1 : 1;
        };
      }
      function InsertionSort(a, from, to) {
        ...
      };
     ...
      function QuickSort(a, from, to) {
        var third_index = 0;
        while (true) {
          // Insertion sort is faster for short arrays.
          if (to - from <= 10) {
            InsertionSort(a, from, to);
            return;
          }
          if (to - from > 1000) {
            third_index = GetThirdIndex(a, from, to);
          } else {
            third_index = from + ((to - from) >> 1);
          }
          // Find a pivot as the median of first, last and middle element.
          var v0 = a[from];
          var v1 = a[to - 1];
          var v2 = a[third_index];
          var c01 = comparefn(v0, v1);
          if (c01 > 0) {
            // v1 < v0, so swap them.
            var tmp = v0;
            v0 = v1;
            v1 = tmp;
          } // v0 <= v1.
          var c02 = comparefn(v0, v2);
          if (c02 >= 0) {
            // v2 <= v0 <= v1.
            var tmp = v0;
            v0 = v2;
            v2 = v1;
            v1 = tmp;
          } else {
            // v0 <= v1 && v0 < v2
            var c12 = comparefn(v1, v2);
            if (c12 > 0) {
              // v0 <= v2 < v1
              var tmp = v1;
              v1 = v2;
              v2 = tmp;
            }
          }
          // v0 <= v1 <= v2
          a[from] = v0;
          a[to - 1] = v2;
          var pivot = v1;
          var low_end = from + 1;   // Upper bound of elements lower than pivot.
          var high_start = to - 1;  // Lower bound of elements greater than pivot.
          a[third_index] = a[low_end];
          a[low_end] = pivot;
    
          // From low_end to i are elements equal to pivot.
          // From i to high_start are elements that haven't been compared yet.
          partition: for (var i = low_end + 1; i < high_start; i++) {
            var element = a[i];
            var order = comparefn(element, pivot);
            if (order < 0) {
              a[i] = a[low_end];
              a[low_end] = element;
              low_end++;
            } else if (order > 0) {
              do {
                high_start--;
                if (high_start == i) break partition;
                var top_elem = a[high_start];
                order = comparefn(top_elem, pivot);
              } while (order > 0);
              a[i] = a[high_start];
              a[high_start] = element;
              if (order < 0) {
                element = a[i];
                a[i] = a[low_end];
                a[low_end] = element;
                low_end++;
              }
            }
          }
          if (to - high_start < low_end - from) {
            QuickSort(a, high_start, to);
            to = low_end;
          } else {
            QuickSort(a, from, low_end);
            from = high_start;
          }
        }
      };
    
      ...
    
      QuickSort(array, 0, num_non_undefined);
     ...
      return array;
    }
    

      这一步最重要的是QuickSort,从代码和注释中可以看出sort使用的是插入排序和快速排序结合的排序算法。数组长度不超过10时,使用插入排序。长度超过10使用快速排序。在数组较短时插入排序更有效率这一步最重要的是QuickSort,从代码和注释中可以看出sort使用的是插入排序和快速排序结合的排序算法。数组长度不超过10时,使用插入排序。长度超过10使用快速排序。在数组较短时插入排序更有效率

     
  • 相关阅读:
    [leetcode]95 Unique Binary Search Trees II (Medium)
    [leetcode] 96 Unique Binary Search Trees (Medium)
    [leetcode] 72. Edit Distance (hard)
    [leetcode] 120. Triangle (Medium)
    [leetcode] 63. Unique Paths II (medium)
    [OpenGL] 不规则区域的填充算法
    [leetcode] 64. Minimum Path Sum (medium)
    ESLint入坑
    报错:for..in loops iterate over the entire prototype chain, which is virtually never what you want.
    vue解决seo优化之预渲染prerender-spa-plugin
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/12515283.html
Copyright © 2020-2023  润新知