• 复杂的对数积分(八)


    [Largedisplaystyle int_0^inftyfrac{lnleft(1+x+sqrt{x^2+2\,x} ight)\,lnleft(1+sqrt{x^2+2\,x+2} ight)}{x^2+2x+1}mathrm dx ]


    (Largemathbf{Solution:})
    This integral can be solved by brutal force.

    [I = int_{1}^{infty} frac{ln(x + sqrt{x^{2} - 1}) ln(1 + sqrt{x^{2} + 1})}{x^{2}} \, mathrm dx ]

    By the knowledge in trigonometry, we obtain

    [egin{align*} I &= int_{1}^{infty} frac{operatorname{arcosh} x cdot (operatorname{arsinh}(1/x) + ln x)}{x^{2}} \, mathrm dx \ &= int_{0}^{1} operatorname{arcosh} (1/x) cdot (operatorname{arsinh} x - ln x) \, mathrm dx end{align*}]

    Note that

    [int (operatorname{arsinh} x - ln x) \, mathrm dx = xoperatorname{arsinh} x - x ln x + x + 1 - sqrt{x^{2} + 1} ]

    Here, the constant of integration is chosen so that the integrand becomes (O(xln x)) as (x searrow 0). Since (operatorname{arcosh}(1/x) = O(ln x)) as (x searrow 0), we can perform integration by parts to obtain

    [I = int_{0}^{1} left( operatorname{arsinh} x - ln x + 1 + frac{1 - sqrt{x^{2} + 1}}{x} ight) \, frac{mathrm dx}{sqrt{1-x^{2}}} ]

    Plug (x=sin heta). Then

    [I = int_{0}^{frac{pi}{2}} left( operatorname{arsinh} (sin heta) - ln sin heta + 1 + frac{1 - sqrt{1 + sin^{2} heta}}{sin heta} ight) \, mathrm d heta ]

    We divide the integral into 4 parts and consider them separately.
    Part 1. By the Taylor expansion of (operatorname{arsinh} x),

    [egin{align*} int_{0}^{frac{pi}{2}} operatorname{arsinh} (sin heta) \, mathrm d heta &= sum_{n=0}^{infty} inom{-1/2}{n} frac{1}{2n+1} int_{0}^{frac{pi}{2}} sin^{2n+1} heta \, mathrm d heta \ &= frac{1}{2} sum_{n=0}^{infty} frac{1}{2n+1} frac{Gammaleft ( dfrac{1}{2} ight )}{Gamma(n+1)Gammaleft ( dfrac{1}{2} ight )} frac{Gamma(n+1)Gammaleft ( dfrac{1}{2} ight )}{Gammaleft ( dfrac{3}{2}+n ight )} \ &= sum_{n=0}^{infty} frac{(-1)^{n}}{(2n+1)^{2}} \&= extbf{G} end{align*}]

    Part 2. We know so many ways to prove that

    [-int_{0}^{frac{pi}{2}} ln sin heta \, mathrm d heta = frac{pi}{2}ln 2 ]

    Part 3. Do you need an explanation for this?

    [int_{0}^{frac{pi}{2}} mathrm d heta = frac{pi}{2} ]

    Part 4. Again, by the Taylor expansion,

    [egin{align*} int_{0}^{frac{pi}{2}} frac{1 - sqrt{1 + sin^{2} heta}}{sin heta} \, mathrm d heta &= - sum_{n=1}^{infty} inom{1/2}{n} int_{0}^{frac{pi}{2}} sin^{2n-1} heta \, mathrm d heta \ &= - frac{1}{2} sum_{n=1}^{infty} frac{Gammaleft ( displaystylefrac{3}{2} ight )}{Gamma(n+1)Gammaleft ( displaystylefrac{3}{2}-n ight )} frac{Gamma(n)Gammaleft ( displaystylefrac{1}{2} ight )}{Gammaleft ( displaystylefrac{1}{2}+n ight )} \ &= sum_{n=0}^{infty} frac{(-1)^{n}}{(2n)(2n-1)} \&= frac{ln 2}{2} - frac{pi}{4} end{align*}]

    Putting all these together, we obtain

    [oxed{displaystyle int_0^inftyfrac{lnleft(1+x+sqrt{x^2+2\,x} ight)\,lnleft(1+sqrt{x^2+2\,x+2} ight)}{x^2+2x+1}mathrm dx=color{Blue} { extbf{G}+fracpi4+frac{pi+1}2ln2}} ]

  • 相关阅读:
    CXF调用webservice客户端
    CXF 需要的jar包下载
    跨域解决
    eclipce集成activiti
    MyEclipse 2017 CI 7安装使用
    BaiduPCS-Go的安装及使用
    织梦后台添加友链,前台不显示|修改友情链接的显示行数
    3种方法判断手机浏览器跳转WAP手机网站
    织梦DEDE后台定时分时段自动更新发布文章插件
    织梦DedeCMS信息发布员发布文章默认自动审核更新并生成HTML页面
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5493614.html
Copyright © 2020-2023  润新知