• 【部分转载】C/C++中的联合体union及CPU大小端判定


    大小端不同会给程序员进行代码移植时带来麻烦,记得之前接手的第一个嵌入式平台的项目就是将工程从X86架构移植到PowerPC架构上,从此走向嵌入式开发的不归路^_^。三年以来,主要涉及到都是嵌入式RTOS应用软件的开发,包括多种硬件接口下的通信,多任务,多块CPU板卡进行同一块资源的互斥访问,多块板卡进行数据采集时的时间不确定性造成采集不同步,大批量数据安全实时通信,多块板卡之间的节拍同步等问题。目前也正开始接触linux操作系统的kernel开发及驱动编写等工作。可以说写此篇blog并且此篇头的感慨,完全是之前一次Atheros面试引起的...

    在C/C++程序的编写中,当多个基本数据类型或复合数据结构要占用同一片内存时,我们要使用联合体;当多种类型,多个对象,多个事物只取其一时(我们姑且通俗地称其为“n 选1”),我们也可以使用联合体来发挥其长处。首先看一段代码:

    View Code
    union myun 
    {
      struct { int x; int y; int z; }u;
       int k;
    }a;
    int main()
    {
       a.u.x =4;
      a.u.y =5;
       a.u.z =6;
       a.k = 0;
       printf("%d %d %d\n",a.u.x,a.u.y,a.u.z);
       return 0;
    }
    union类型是共享内存的,以size最大的结构作为自己的大小,这样的话,myun这个结构就包含u这个结构体,而大小也等于u这个结构体的大小,在内存中的排列为声明的顺序x,y,z从低到高,然后赋值的时候,在内存中,就是x的位置放置4,y的位置放置5,z的位置放置6,现在对k赋值,对k的赋值因为是union,要共享内存,所以从union的首地址开始放置,首地址开始的位置其实是x的位置,这样原来内存中x的位置就被k所赋的值代替了,就变为0了,这个时候要进行打印,就直接看内存里就行了,x的位置也就是k的位置是0,而y,z的位置的值没有改变,所以应该是0,5,6
     
    再看两个试题:
    试题一:编写一段程序判断系统中的CPU 是Little endian 还是Big endian 模式?
    分析:
    作为一个计算机相关专业的人,我们应该在计算机组成中都学习过什么叫Little endian 和Big endian。Little endian 和Big endian 是CPU 存放数据的两种不同顺序。对于整型、长整型等数据类型,Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节——大端);而Little endian 则相反,它认为第一个字节是最低位字节(按照从低地址到高地址的顺序存放数据的低位字节到高位字节——小端)。
    例如,假设从内存地址0x0000 开始有以下数据:
    0x12 0x34 0xab 0xcd
    如果我们去读取一个地址为0x0000 的四个字节变量,若字节序为big-endian,则读出结果为0x1234abcd;若字节序位little-endian,则读出结果为xcdab3412。如果我们将0x1234abcd 写入到以0x0000 开始的内存中,则Little endian 和Big endian 模式的存放结果如下:
    地址               0x0000 0x0001 0x0002 0x0003
    big-endian        0x12     0x34     0xab     0xcd
    little-endian       0xcd     0xab     0x34     0x12
    一般来说,x86 系列CPU 都是little-endian 的字节序,PowerPC 通常是Big endian,还有的CPU 能通过跳线来设置CPU 工作于Little endian 还是Big endian 模式。
    解答:
    显然,解答这个问题的方法只能是将一个字节(CHAR/BYTE 类型)的数据和一个整型数据存放于同样的内存开始地址,通过读取整型数据,分析CHAR/BYTE 数据在整型数据的高位还是低位来判断CPU 工作于Little endian 还是Big endian 模式。得出如下的答案:
    View Code
    typedef unsigned char BYTE;
    int main(int argc, char* argv[])
    {
      unsigned int num,*p;
      p = #
      num = 0;
      *(BYTE *)p = 0xff;
      if(num == 0xff)
      {
        printf("The endian of cpu is little\n");
      }
      else //num == 0xff000000
      {
        printf("The endian of cpu is big\n");
      }
      return 0;
    }

    除了上述方法(通过指针类型强制转换并对整型数据首字节赋值,判断该赋值赋给了高位还是低位)外,还有没有更好的办法呢?我们知道,union 的成员本身就被存放在相同的内存空间(共享内存,正是union 发挥作用、做贡献的去处),因此,我们可以将一个CHAR/BYTE 数据和一个整型数据同时作为一个union 的成员,得出
    如下答案:

    View Code
    int checkCPU()
    {
      union w
      {
       int a;
       char b;
      }c;
      c.a = 1;
      return (c.b == 1); // 小端返回TRUE,大端返回FALSE
    }

    实现同样的功能,我们来看看Linux 操作系统中相关的源代码是怎么做的:

    static union { char c[4]; unsigned long mylong; } endian_test = {{ 'l', '?', '?', 'b' } };
    #define ENDIANNESS ((char)endian_test.mylong)

    inux 的内核作者们仅仅用一个union 变量和一个简单的宏定义就实现了一大段代码同样的功能!由以上一段代码我们可以深刻领会到Linux 源代码的精妙之处!(如果ENDIANNESS=’l’表示系统为little endian,为’b’表示big endian )
    试题二:假设网络节点A 和网络节点B 中的通信协议涉及四类报文,报文格式为“报文类型字段+报文内容的结构体”,四个报文内容的结构体类型分别为STRUCTTYPE1~ STRUCTTYPE4,请编写程序以最简单的方式组
    织一个统一的报文数据结构。

    分析:
    报文的格式为“报文类型+报文内容的结构体”,在真实的通信中,每次只能发四类报文中的一种,我们可以将四类报文的结构体组织为一个union(共享一段内存,但每次有效的只是一种),然后和报文类型字段统一组织成一个报文数据结构。
    解答:
    根据上述分析,我们很自然地得出如下答案:

    View Code
    typedef unsigned char BYTE;
    //报文内容联合体
    typedef union tagPacketContent
    {
      STRUCTTYPE1 pkt1;
      STRUCTTYPE2 pkt2;
      STRUCTTYPE3 pkt1;
      STRUCTTYPE4 pkt2;
    }PacketContent;
    //统一的报文数据结构
    typedef struct tagPacket
    {
      BYTE pktType;
      PacketContent pktContent;
    }Packet;

    引自http://www.cnblogs.com/ziwuge/archive/2010/12/27/1917765.html




  • 相关阅读:
    java 数组
    数组(二)
    JVM内存分配策略
    JVM垃圾收集算法
    LINUX 查看硬件配置命令
    遗传算法
    svn简单使用
    Several concepts in Data Mining
    JVM判断对象存活的算法
    JVM运行时数据区
  • 原文地址:https://www.cnblogs.com/RealOnlyme/p/2396207.html
Copyright © 2020-2023  润新知