• The Contiki build system 编译系统


    The Contiki build system
    ========================

    The Contiki build system is designed to make it easy to compile Contiki
    applications for different hardware platforms or into a simulation platform by
    simply supplying different parameters to the make command, without having to
    edit makefiles or modify the application code.
    编译系统旨在设计成在不同的硬件平台上都通用的编译系统,仅仅主需要几个不同的参数就可以比哪一不用编辑makefiles文件或者修改应用代码。

    The file example project in examples/hello-world/ shows how the Contiki build
    system works. The hello-world.c application can be built into a complete
    Contiki system by running make in the examples/hello-world/ directory. 在example项目中的Helloworld项目真是了contiki编译系统是怎么工作的。
    其中的Helloworld.c文件可以被编译进入contiki系统中通过在hello-world文件夹下执行make命令
    Running make without parameters will build a Contiki system using the native target.
    The native target is a special Contiki platform that builds an entire Contiki
    system as a program that runs on the development system.
    执行没有参数的make命令将会编译一个 本地的目标,
    本地目标是一个特殊的contiki平台它编译了一个完整的contiki系统。
    After compiling the
    application for the native target it is possible to run the Contiki system with
    the application by running the file hello-world.native. To compile the
    application and a Contiki system for the ESB platform the command make
    TARGET=esb is used. This produces a hello-world.esb file that can be loaded
    into an ESB board.
    在编译完之后可以通过运行 hello-world.native 来运行, 为了编译应用和contiki系统能够在ESB平台下运行,那么可以使用命令 make TARGET=esb 这将会产生一个 hello-world.esb文件,能够下载到ESB板中。

    To compile the hello-world application into a stand-alone executable that can
    be loaded into a running Contiki system, the command make hello-world.ce is
    used. To build an executable file for the ESB platform, make TARGET=esb
    hello-world.ce is run.
    为了编译hello-world应用成为一个独立的可执行的文件并可以加载到一个正在运行的contiki系统中,那么可以使用 make hello-world.ce 命令。 如果需要指定平台为ESB的话可以用命令
    make TARGET=ESB hello-world.ce
    To avoid having to type TARGET= every time make is run, it is possible to run
    make TARGET=esb savetarget to save the selected target as the default target
    platform for subsequent invocations of make. A file called Makefile.target
    containing the currently saved target is saved in the project's directory.
    为了避免每次都要输入TARGET= ....可以在makfile.targe 中进行配置默认的平台

    Beside TARGET= there's DEFINES= which allows to set arbitrary variables for the
    C preprocessor in form of a comma-separated list. Again it is possible to avoid
    having to re-type i.e. DEFINES=MYTRACE,MYVALUE=4711 by running make TARGET=esb
    DEFINES=MYTRACE,MYVALUE=4711 savedefines. A file called Makefile.esb.defines is
    saved in the project's directory containing the currently saved defines for the
    ESB platform.

    Makefiles used in the Contiki build system The Contiki build system is composed
    of a number of Makefiles. These are:

    contiki编译系统中的makefiles文件由几个makefile文件组成。
    * Makefile: the project's makefile, located in the project directory.
    1:工程项目自己的makefile文件 在自己的工程目录下
    * Makefile.include: the system-wide Contiki makefile, located in the root of
    the Contiki source tree.
    2:makefile.include contiki系统的makefile文件在contiki系统源文件的根目录下。
    * Makefile.$(TARGET) (where $(TARGET) is the name of the platform that is
    currently being built): rules for the specific platform, located in the
    platform's subdirectory in the platform/ directory.
    3: makefile.(平台) 位于platform文件夹对应的平台文件夹下面。
    * Makefile.$(CPU) (where $(CPU) is the name of the CPU or microcontroller
    architecture used on the platform for which Contiki is built): rules for the
    CPU architecture, located in the CPU architecture's subdirectory in the cpu/
    directory.
    4:makefile.(CPU) 在CPU文件夹下对应微处理器文件夹下。

    * Makefile.$(APP) (where $(APP) is the name of an application in the apps/
    directory): rules for applications in the apps/ directories. Each application
    has its own makefile.
    5: makefile.(应用) 在apps文件夹下对应的应用文件夹下面,每个应用对应一个文件夹。

    The Makefile in the project's directory is intentionally simple. It specifies
    where the Contiki source code resides in the system and includes the
    system-wide Makefile, Makefile.include. The project's makefile can also define
    in the APPS variable a list of applications from the apps/ directory that
    should be included in the Contiki system. The Makefile used in the hello-world
    example project looks like this:
    makefile在工程项目目录中非常的简单。它指定了contiki源代码在系统中的位置,并且包含了系统全局的
    makefile文件——makefile-include文件。这个工程的makefile可以定义在apps变量。

    CONTIKI_PROJECT = hello-world
    all: $(CONTIKI_PROJECT)

    CONTIKI = ../..
    include $(CONTIKI)/Makefile.include

    First, the location of the Contiki source code tree is given by defining the
    CONTIKI variable. Next, the name of the application is defined. Finally, the
    system-wide Makefile.include is included.
    首先 contiki的源代码树为位置由 CONTIKI变量给出,然后,应用的名称已经定义了 最后系统的makefile文件 makefile.include也需要被包含进来。

    The Makefile.include contains definitions of the C files of the core Contiki
    system. Makefile.include always reside in the root of the Contiki source tree.
    When make is run, Makefile.include includes the Makefile.$(TARGET) as well as
    all makefiles for the applications in the APPS list (which is specified by the
    project's Makefile).
    makefile.include 包含了 contiki系统的核心c文件。
    makefile.include 文件总是位于contiki源代码的根目录下。当make命令执行时
    makefile.include 包括了makefile.$(TARGET)并且也包含了所有的 应用的makefile文件——被工程项目指定的makefile文件。

    Makefile.$(TARGET), which is located in the platform/$(TARGET)/ directory,
    contains the list of C files that the platform adds to the Contiki system. This
    list is defined by the CONTIKI_TARGET_SOURCEFILES variable. The
    Makefile.$(TARGET) also includes the Makefile.$(CPU) from the cpu/$(CPU)/
    directory.
    makefile.$(TARGET) 在platform文件夹/$(TARGET)/directory 包含了一系列的平台添加到contiki系统的的c文件,这个c文件列表是由CONTIKI_TARGET_SOURCEFILES 变量定义。 makefile.$(TARGET) 也包含了makfile.$(CPU) 文件。

    The Makefile.$(CPU) typically contains definitions for the C compiler used for
    the particular CPU. If multiple C compilers are used, the Makefile.$(CPU) can
    either contain a conditional expression that allows different C compilers to be
    defined, or it can be completely overridden by the platform specific makefile
    Makefile.$(TARGET).
    makefile.$(CPU)一般包含针对某种型号CPU的c编译器。 如果有多个c编译器被使用,那么此文件可以包含一个条件判断语句允许不同的c编译器,或者可以被 平台指定的makefile.$(TARGET) overridden

    阿南 On the way.
  • 相关阅读:
    js没有重载
    零基础学习hadoop到上手工作线路指导(初级篇)
    hadoop1.x和2.x的一些主要区别
    LIBCURL教程
    钩子函数大全(2)
    Visual Studio快捷键
    Linux上搭建Hadoop2.6.3集群以及WIN7通过Eclipse开发MapReduce的demo
    Hadoop2.7.1安装与配置
    超详细单机版搭建hadoop环境图文解析
    Windows下运行Hadoop
  • 原文地址:https://www.cnblogs.com/RealMan/p/4602562.html
Copyright © 2020-2023  润新知