Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n]
inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.
Example 1:
nums = [1, 3]
, n = 6
Return 1
.
Combinations of nums are [1], [3], [1,3]
, which form possible sums of: 1, 3, 4
.
Now if we add/patch 2
to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3]
.
Possible sums are 1, 2, 3, 4, 5, 6
, which now covers the range [1, 6]
.
So we only need 1
patch.
Example 2:
nums = [1, 5, 10]
, n = 20
Return 2
.
The two patches can be [2, 4]
.
Example 3:
nums = [1, 2, 2]
, n = 5
Return 0
.
本题基于在一个数列中,
1+A1+A2+......+Ak >= Ak+1,则[1,k]连续
public class Solution { public int minPatches(int[] nums, int n) { int miss = 1; int add = 0; int i = 0; while(miss <= n) { //两个条件<br>1. i < nums.length, 数组的全部累加和小于n<br>2. miss >= nums[i], 这条就是上面提到的数学原理 if(i < nums.length && miss >= nums[i]) { miss = miss + nums[i]; i++; } //如果累加的和小于nums[i+1],则补上这个sum(当条件不满足时,补上1+A1+A2+...+Ak) else { add++; //第一个miss是sum,第二个miss是要插入数组的值,新的miss是添加完这个数的sum miss = miss + miss; } } return add; } }
需要注意的是,这段Java代码在n取到极值232-1时,会有溢出,需要将int转换为long