• 【火炉炼AI】机器学习030-KNN分类器模型的构建


    【火炉炼AI】机器学习030-KNN分类器模型的构建

    (本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )

    KNN(K-nearest neighbors)是用K个最近邻的训练数据集来寻找未知对象分类的一种算法。其基本的核心思想在我的上一篇文章中介绍过了。


    1. 准备数据集

    此处我的数据集准备包括数据加载和数据可视化,这部分比较简单,以前文章中使用了多次,直接看数据分布图。

    样本数据分布图


    2. 构建KNN分类器模型

    2.1 KNN分类器模型的构建和训练

    构建KNN分类器模型的方法和SVM,RandomForest的方法类似,代码如下:

    
    # 构建KNN分类模型
    from sklearn.neighbors import KNeighborsClassifier
    K=10 # 暂定10个最近样本
    KNN=KNeighborsClassifier(K,weights='distance')
    KNN.fit(dataset_X,dataset_y) # 使用该数据集训练模型
    
    

    上面使用数据集训练了这个KNN模型,但是我们怎么知道该模型的训练效果了?下面绘制了分类模型在训练数据集上的分类效果,从边界上来看,该分类器比较清晰的将这个数据集区分开来。

    KNN分类模型在训练集上的分类效果

    2.1 用训练好的KNN分类器预测新样本

    直接上代码:

    
    # 用训练好的KNN模型预测新样本
    new_sample=np.array([[4.5,3.6]])
    predicted=KNN.predict(new_sample)[0]
    print("KNN predicted:{}".format(predicted))
    
    

    得到的结果是2,表示该新样本属于第2类。

    下面我们将这个新样本绘制到图中,看看它在图中的位置。

    为了绘制新样本和其周围的K个样本的位置,我修改了上面的plot_classifier函数,如下为代码:

    # 为了查看新样本在原数据集中的位置,也为了查看新样本周围最近的K个样本位置,
    # 我修改了上面的plot_classifier函数,如下所示:
    
    def plot_classifier2(KNN_classifier, X, y,new_sample,K):
        x_min, x_max = min(X[:, 0]) - 1.0, max(X[:, 0]) + 1.0 # 计算图中坐标的范围
        y_min, y_max = min(X[:, 1]) - 1.0, max(X[:, 1]) + 1.0
        step_size = 0.01 # 设置step size
        x_values, y_values = np.meshgrid(np.arange(x_min, x_max, step_size),
                                         np.arange(y_min, y_max, step_size))
        # 构建网格数据
        mesh_output = KNN_classifier.predict(np.c_[x_values.ravel(), y_values.ravel()])
        mesh_output = mesh_output.reshape(x_values.shape) 
        plt.figure()
        plt.pcolormesh(x_values, y_values, mesh_output, cmap=plt.cm.gray)
        plt.scatter(X[:, 0], X[:, 1], c=y, s=80, edgecolors='black', 
                    linewidth=1, cmap=plt.cm.Paired)
        # 绘制新样本所在的位置
        plt.scatter(new_sample[:,0],new_sample[:,1],marker='*',color='red')
        # 绘制新样本周围最近的K个样本,只适用于KNN
        # Extract k nearest neighbors
        dist, indices = KNN_classifier.kneighbors(new_sample)
        plt.scatter(dataset_X[indices][0][:][:,0],dataset_X[indices][0][:][:,1],
                    marker='x',s=80,color='r')
        # specify the boundaries of the figure
        plt.xlim(x_values.min(), x_values.max())
        plt.ylim(y_values.min(), y_values.max())
    
        # specify the ticks on the X and Y axes
        plt.xticks((np.arange(int(min(X[:, 0])), int(max(X[:, 0])), 1.0)))
        plt.yticks((np.arange(int(min(X[:, 1])), int(max(X[:, 1])), 1.0)))
    
        plt.show()
    
    

    直接代入运行后得到结果图:

    新样本在KNN分类器数据点中的位置

    从图中可以看出,红色的五角星是我们的新样本,而红色的叉号表示与其最近的K个邻居。可以看出,这些邻居中的大多数都位于第二个类别中,故而新样本也被划分到第二个类比,通过predict得到的结果也是2。

    ########################小**********结###############################

    1,构建和训练KNN分类器非常简单,只需要用sklearn导入KNNClassifier,然后用fit()函数即可。

    2,KNN分类器存储了所有可用的训练集数据点,在新的数据点需要预测时,首先计算该新数据点和内部存储的所有数据点的相似度(也就是距离),并对该距离排序,获取距离最近的K个数据点,然后判断这K个数据点的大多数属于哪一个类别,就认为该新数据点属于哪一个类别。这也解释了为什么K通常取奇数,要是偶数,得到两个类别的数据点个数都相等,那就尴尬了。

    3,KNN分类器的难点是寻找最合适的K值,这个需要用交叉验证来反复尝试,采用具有最大准确率或召回率的K作为最佳K值,这个过程也可以采用GridSearch或RandomSearch来完成。

    #################################################################


    注:本部分代码已经全部上传到(我的github)上,欢迎下载。

    参考资料:

    1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译

  • 相关阅读:
    汉字词组换行
    C#中获取Excel文件的第一个表名
    SQL查找某一条记录的方法
    C#数据库连接字符大全
    整理的asp.net资料!(不得不收藏)
    母版页的优点,及母版页与内容页中相互访问方法
    13范式
    使用 Jackson 树连接线形状
    word2007,取消显示回车符
    三张表之间相互的多对多关系
  • 原文地址:https://www.cnblogs.com/RayDean/p/9765747.html
Copyright © 2020-2023  润新知