传送门
题解
ST表和并查集是我认为最优雅(其实是最好写……)的两个数据结构。
然鹅!他俩加一起的这道题,我却……没有做出来……
咳咳。
正解是这样的:
类似ST表有(log n)层一样,我们开(log n)个并查集。当已知([l_1, r_1])和([l_2, r_2])相同的时候,设(j = lfloor log (r_1 - l_1 + 1)
floor),把(l_1, l_2)在(j)这层的并查集中合并,把(r_1 - 2^j + 1, r_2 - 2^j + 1)也在(j)这层并查集中合并。
最后是要下放的。下方时,从大到小枚举(j),在(j - 1)这层并查集中合并(i, fa[i][j])以及(i + 2^{j - 1}, fa[i][j] + 2 ^ {j - 1})。
最后统计有多少不同的(fa[i][0])即可,设有(x)个,则答案是(9 * 10^{x - 1}),因为第一位不能是0。
我犯了个低级失误,就是最后统计有多少不同的(fa[i][0])时,我打的真的是(fa[i][0]),其实这里一定要findfa(i, 0)
。。。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <ctime>
#include <cstdlib>
using namespace std;
typedef unsigned long long ll;
#define enter putchar('
')
#define space putchar(' ')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100005, P = 1000000007;
int n, m, lg[N], fa[N][20];
bool vis[N];
ll ans = 9;
void init(){
for(int i = 1, j = 0; i <= n; i++)
lg[i] = i == (1 << (j + 1)) ? ++j : j;
for(int j = 0; (1 << j) <= n; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
fa[i][j] = i;
}
int findfa(int u, int j){
return fa[u][j] == u ? u : fa[u][j] = findfa(fa[u][j], j);
}
void merge(int u, int v, int j){
if(findfa(u, j) != findfa(v, j))
fa[fa[v][j]][j] = fa[u][j];
}
void merge(int l1, int r1, int l2, int r2){
int j = lg[r1 - l1 + 1];
merge(l1, l2, j);
merge(r1 - (1 << j) + 1, r2 - (1 << j) + 1, j);
}
int main(){
read(n), read(m);
init();
while(m--){
int l1, r1, l2, r2;
read(l1), read(r1), read(l2), read(r2);
merge(l1, r1, l2, r2);
}
for(int j = lg[n]; j; j--)
for(int i = 1; i + (1 << j) - 1 <= n; i++){
merge(i, fa[i][j], j - 1);
merge(i + (1 << (j - 1)), fa[i][j] + (1 << (j - 1)), j - 1);
}
for(int i = 1; i <= n; i++)
vis[findfa(i, 0)] = 1;
for(int i = 1, fir = 1; i <= n; i++)
if(vis[i]){
if(fir) fir = 0;
else ans = ans * 10 % P;
}
write(ans), enter;
return 0;
}