• 4817 [Sdoi2017]树点涂色


    题目描述

    Bob 有一棵 n 个点的有根树,其中 1 号点是根节点。Bob 在每个点上涂了颜色,并且每个点上的颜色不同。

    定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色。

    Bob可能会进行这几种操作:

    • 1 x 表示把点 x 到根节点的路径上所有的点染上一种没有用过的新颜色。
    • 2 x y 求 x 到 y 的路径的权值。
    • 3 x 在以 x 为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值。

    Bob一共会进行 m 次操作

    输入格式

    第一行两个数 n,m。

    接下来 n−1 行,每行两个数 a,b 表示 a 与 b 之间有一条边。

    接下来 m 行,表示操作,格式见题目描述

    输出格式

    每当出现 2,3 操作,输出一行。

    如果是 2 操作,输出一个数表示路径的权值

    如果是 3 操作,输出一个数表示权值的最大值

    输入输出样例

    输入 #1

    5 6
    1 2
    2 3
    3 4
    3 5
    2 4 5
    3 3
    1 4
    2 4 5
    1 5
    2 4 5
    

    输出 #1

    3
    4
    2
    2
    

    说明/提示

    (n , m <= 1e5)

    分析

    将相同颜色的点看做一个Splay , 那么操作1就是标准的access

    对于操作二三维护,一个点到根的颜色个数,也是Splay的个数。

    这个可以用线段树维护

    在assess操作时,将要并上去的的子树-- , 断开的子树++

    注意

    1.别忘了初始化,初始时各个节点颜色互不相同,也就是ans = d(到根的距离) 2.rot时分清谁和谁, 我脑残写了 fa[x] = y , fa[y] = x
    #include<iostream>
    #include<cstdio>
    using namespace std;
    const int N = 210000;
    inline int read()
    {
    	register int x = 0; register char c = getchar();
    	while(c < '0' || c > '9') c = getchar(); while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
    	return x;
    }
    int n , m , dfn , cnt;
    int head[N] , st[N] , ed[N] , d[N] , fdfn[N] , f[N][20] , siz[N] , fa[N] , tr[N][2] , rev[N] , maxn[N<<2] , tag[N<<2];
    struct edge{int v , nex; } e[N<<1];
    inline void add(int u , int v) { e[++cnt].v = v; e[cnt].nex = head[u]; head[u] = cnt; return ; }
    #define D_bag puts("this is OK!!");
    // Segment_tree->begin()
    
    void Down(int k)
    {
    	if(tag[k])
    	{
    		maxn[k<<1] += tag[k]; maxn[k<<1|1] += tag[k]; 
    		tag[k<<1] += tag[k]; tag[k<<1|1] += tag[k]; tag[k] = 0; // tag -->clear
    	}
    	return ;
    }
    
    void build(int k , int l , int r) // 建树初始化 
    {
    	if(l == r)
    	{
    		maxn[k] = d[fdfn[l]];
    		return ;
    	}
    	int mid = (l + r) >> 1;
    	build(k << 1 , l , mid);
    	build(k << 1 | 1 , mid + 1 , r);
    	maxn[k] = max(maxn[k<<1] , maxn[k<<1|1]);
    	return ;
    }
    
    void Change(int k , int l , int r , int x , int y , int val)
    {
    	if(x <= l && r <= y) return (void)(maxn[k] += val , tag[k] += val);
    	int mid = (l + r) >> 1; Down(k);
    	if(x <= mid) Change(k << 1 , l , mid , x , y , val);
    	if(y  > mid) Change(k << 1 | 1 , mid+1 , r , x , y , val);
    	maxn[k] = max(maxn[k<<1] , maxn[k<<1|1]); return ;
    }
    
    int Ask(int k , int l , int r , int x , int y)
    {
    	if(x <= l && r <= y) return maxn[k];
    	Down(k); int mid = (l + r) >> 1 , ans = 0;
    	if(x <= mid) ans = max(ans , Ask(k<<1 , l , mid , x , y));
    	if(y  > mid) ans = max(ans , Ask(k<<1|1 , mid+1 , r , x , y));
    	return ans;
    }
    
    // Segment_tree->end()
    
    
    inline int witch(int x) { return x == tr[fa[x]][1]; }
    inline int nrt(int x) { return (fa[x] && (tr[fa[x]][0] == x || tr[fa[x]][1] == x)); }
    void rot(int x)
    {
    	int y = fa[x] , z = fa[y] , k = witch(x) , w = tr[x][!k];
    	if(nrt(y)) tr[z][witch(y)] = x; fa[x] = z; // !!!!
    	tr[y][k] = w; if(w) fa[w] = y;
    	tr[x][!k] = y; fa[y] = x;
    }
    
    void Splay(int x)
    {
    	while(nrt(x))
    	{
    		if(nrt(fa[x])) rot(witch(x) == witch(fa[x]) ? fa[x] : x);
    		rot(x);
    	}
    	return ;
    }
    
    int find_son(int x)
    {
    	while(tr[x][0]) x = tr[x][0]; return x;
    }
    
    void assess(int x)
    {
    	int t = 0;
    	for(t = 0; x ; t = x , x = fa[x])
    	{
    		Splay(x);
    		if(t)
    		{
    			int son = find_son(t);
    			Change(1 , 1 , n , st[son] , ed[son] , -1);
    		}
    		if(tr[x][1])
    		{
    			int son = find_son(tr[x][1]);
    			Change(1 , 1 , n , st[son] , ed[son] , 1);
    		}
    		tr[x][1] = t;  
    	}
    	return ;
    }
    
    int lca(int x , int y)
    {
    	if(x == y) return x;
    	if(d[x] < d[y]) swap(x , y);
    	for(int i = 18 ; i >= 0 ; --i) if(d[f[x][i]] >= d[y]) x = f[x][i];
    	if(x == y) return x;
    	for(int i = 18 ; i >= 0 ; --i) if(f[x][i] != f[y][i]) x = f[x][i] , y = f[y][i];
    	return f[x][0];
    }
    
    void dfs(int x)
    {
    	st[x] = ++dfn; fdfn[dfn] = x;
    	for(int i = 1 ; i <= 18 ; ++i) f[x][i] = f[f[x][i-1]][i-1];
    	for(int i = head[x] , v; i ; i = e[i].nex)
    	{
    		v = e[i].v; 
    		if(v == f[x][0]) continue;
    		f[v][0] = x; d[v] = d[x] + 1; fa[v] = x; dfs(v);
    	}	
    	ed[x] = dfn;
    	return ;
    }
    int main()
    {
    	n = read(); m = read();
    	for(int i = 1 , a , b; i <= n - 1 ; ++i)
    	{
    		a = read(); b = read();
    		add(a , b); add(b , a);
    	}
    	d[1] = 1; dfs(1); 
    	build(1 , 1 , n);
    	for(int i = 1 , op , x ; i <= m ; ++i)
    	{
    		op = read(); x = read();
    		if(op == 1) assess(x);
    		else
    		if(op == 2)
    		{
    			int y = read() , p = lca(x , y);
    			int ans = Ask(1 , 1 , n , st[x] , st[x]) + Ask(1 , 1 , n , st[y] , st[y]) - 2 * Ask(1 , 1 , n , st[p] , st[p]) + 1;
    			printf("%d
    " , ans);
    		}
    		else
    		if(op == 3)
    			printf("%d
    " , Ask(1 , 1 , n , st[x] , ed[x]));
    	}
    	return 0;
    }
    /*
    5 6
    1 2
    2 3
    3 4
    3 5
    2 4 5
    3 3
    1 4
    2 4 5
    1 5
    2 4 5
    */
    
  • 相关阅读:
    schedule和scheduleAtFixedRate的区别
    JAVAWEB项目报"xxx响应头缺失“漏洞处理方案
    springboot整合swagger初探指南
    wsl安装jdk
    树莓派开机启动chrome并全屏
    数据库06_数据库设计
    数据库05_事务处理
    数据库04_SQL简单实践
    Spring-AOP
    数据库03_SQL语句
  • 原文地址:https://www.cnblogs.com/R-Q-R-Q/p/12158712.html
Copyright © 2020-2023  润新知