• P2533 [AHOI2012]信号塔


    题目描述

    img

    输入格式

    img

    输出格式

    img

    输入输出样例

    输入 #1

    5
    1.200 1.200
    2.400 2.400
    3.800 4.500
    2.500 3.100
    3.900 1.300
    

    输出 #1

    2.50 2.85 2.10
    

    说明/提示

    队员是否在边界上的判断应该符合他到圆心的距离与信号塔接受半径的差的绝对值小于10^-6,最终结果保留2位整数。

    30%:1<=N<=10000

    70%:1<=N<=20000

    100%:1<=N<=1e6

    最小圆覆盖的模板题。。。看似(O(n^3)) 其实是(O(n)) 。。。。。。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    const int N = 1e6+100;
    const double eps = 1e-6;
    int n;
    struct point{double x , y; } a[N] , o;
    double r;
    inline double dis(point A ,point B) { return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)) ;}
    int from[4];
    int dcmp(double X) { return fabs(X) < eps ? 0 : (X < eps ? -1 : 1) ; }
    bool include(point A) { return dcmp(dis(A , o) - r) <= 0; }
    
    void build(point A , point B , point C)
    {
    	double 
    	a = B.x - A.x , b = B.x + A.x ,
    	c = B.y - A.y , d = B.y + A.y ,
    	ap = C.x - A.x , bp = C.x + A.x ,
    	cp = C.y - A.y , dp = C.y + A.y ;
    	o.x = (ap * bp * c - cp * a * b + cp * dp * c - cp * c * d) / (ap * c - cp * a) / 2.0;
    	o.y = (a * b - 2 * o.x * a + c * d) / c / 2.0;
    	r = dis(o , A); return ;
    }
    
    int main()
    {
    	scanf("%d",&n);
    	for(int i = 1 ; i <= n ; ++i) scanf("%lf%lf" , &a[i].x , &a[i].y);
    	random_shuffle(a + 1 , a + 1 + n);
    	o = a[1]; r = 0;
    	for(int i = 2 ; i <= n ; ++i)
    	{
    		if(include(a[i])) continue;
    		o = a[i]; r = 0;
    		for(int j = 1 ; j < i ; ++j)
    		{
    			if(include(a[j])) continue;
    			o.x = (a[i].x + a[j].x) * 0.5;
    			o.y = (a[i].y + a[j].y) * 0.5;
    			r = dis(o , a[j]);
    			for(int k = 1 ; k < j ; ++k)
    			{
    				if(include(a[k])) continue;
    				build(a[i] , a[j] , a[k]);
    			}
     		}
    	}
    	printf("%.2f %.2f %.2f" , o.x , o.y , r);
    	return 0;
    }
    
  • 相关阅读:
    Pytorch使用tensorboardX可视化。超详细!!!
    pytorch旧版安装
    Pytorch的网络结构可视化(tensorboardX)(详细)
    PyTorch代码调试利器: 自动print每行代码的Tensor信息
    权重衰减(weight decay)与学习率衰减(learning rate decay)
    pytorch的backward
    PyTorch入门学习(二):Autogard之自动求梯度
    Pytorch
    Python之线程、进程和协程
    Python之logging模块
  • 原文地址:https://www.cnblogs.com/R-Q-R-Q/p/12147887.html
Copyright © 2020-2023  润新知